Vegetation History and Archaeobotany

, Volume 27, Issue 4, pp 635–648 | Cite as

Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies

  • John M. McPartlandEmail author
  • Geoffrey W. Guy
  • William Hegman


Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelniţa culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.


Cannabis sativa Humulus lupulus European Pollen Database Europe GIS Pleistocene Holocene 



Felix Bittmann, Anna Maria Mercuri, Mark Merlin, and two anonymous reviewers greatly improved this manuscript with their suggestions. Funding was provided by GW Pharmaceuticals.

Supplementary material

334_2018_678_MOESM1_ESM.pdf (986 kb)
Online Resource 1. Extended methods. Inclusion criteria with a critique of pollen threshold percentages, morphological methods of pollen identification, phytosociological studies of C. sativa and H. lupulus, AP/NAP ratios and pollen signals indicative of crop cultivation, methods of data extraction and binning for algorithm application (PDF 985 KB)
334_2018_678_MOESM2_ESM.pdf (9.8 mb)
Online Resource 2. Maps. This file contains nine maps. Map S1: Locations of 479 fossil pollen studies, plotted on a map of Europe. Maps S2-9: Territories of archaeological cultures (PDF 10080 KB)
334_2018_678_MOESM3_ESM.pdf (1.3 mb)
Online Resource 3. Tables. This file contains three Tables. Table S1: Fossil pollen studies with C-H pollen from the Late Glacial and Holocene. Table S2: Fossil pollen studies excluded from analysis. Table S3: Fossil pollen studies predating 18.5 kya (PDF 1319 KB)


  1. Akeroyd JR (1993) Cannabis L. In: Tutin TG et al (eds) Flora Europaea, vol 1: Psilotaceae to Platanaceae. Cambridge University Press, Cambridge, p 78Google Scholar
  2. Alsos IG, Alm T, Norman S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modeling. Glob Ecol Biogeogr 18:223–239CrossRefGoogle Scholar
  3. Bartosiewicz L, Gál E (2010) Living on the frontier: “Scythian” and “Celtic” animal exploitation in Iron age northeastern Hungary. In: Campana DV et al (eds) Anthropological approaches to zooarchaeology. Oxbow Books, Oxford, pp 115–127Google Scholar
  4. Berglund M (2004) Holocene shore displacement and chronology in Angermanland, eastern Sweden, the Scandinavian glacio-isostatic uplift centre. Boreas 33:48–60CrossRefGoogle Scholar
  5. Binney H, Edwards M, Macias-Fauria M et al (2017) Vegetation of Eurasia from the Last Glacial Maximum to the present: key biogeographic patterns. Quat Sci Rev 157:80–97CrossRefGoogle Scholar
  6. Blyakharchuk TA, Amel’chenko VP (2012) Dynamics of the range of Artemisia genus over the territory of Western Siberia and adjacent regions in Holocene in connection with climate change on the basis of pollen data. Contemp Probl Ecol 5:136–145CrossRefGoogle Scholar
  7. Bogaard A (2004) Neolithic farming in central Europe. Routledge, LondonGoogle Scholar
  8. Bolikhovskaya NS (2007) Spatial and temporal regularities in the evolution of vegetation and climate of North Eurasia in the Neopleistocene. Archaeol Ethnol Anthropol Eurasia 4(32):2–28CrossRefGoogle Scholar
  9. Braund D (2015) Thracians and Scythians: tensions, interactions, and osmosis. In: Valena J, Nankov E, Graninger D (eds) A companion to ancient Thrace. Wiley Blackwell, Chichester, pp 352–365Google Scholar
  10. Brewer S, Giesecke T, Davis BAS et al (2017) Late-glacial and Holocene European pollen data. J Maps 13:921–928CrossRefGoogle Scholar
  11. Bukowski Z (1977) The Scythian influence in the area of Lusatian culture. Zakład Narodowy imienia Ossolińskich, WrocławGoogle Scholar
  12. Cao XY, Ni JA, Herzschuh U et al (2013) A late quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev Palaeobot Palynol 194:21–27CrossRefGoogle Scholar
  13. Cârciumaru M (1996) Paleoetnobotanica. Studii în preistoria şi protoistoria României. Editura Glasul Bucovinei, IaşiGoogle Scholar
  14. Clarke RC, Merlin MD (2013) Cannabis evolution and ethnobotany. University of California Press, BerkeleyGoogle Scholar
  15. Collinson ME (1989) The fossil history of the Moraceae, Urticaceae (including Cecropiaceae), and Cannabaceae. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the hamamelidae, vol 2. Clarendon Press, Oxford, pp 319–339Google Scholar
  16. Conner SE (2011) A promethean legacy: late quaternary vegetation history of southern Georgia, Caucasus. Walpole, LeuvenGoogle Scholar
  17. Conolly J, Colledge S, Shennan S (2008) Founder effect, drift, and adaptive change in domestic crop use in early Neolithic Europe. J Archaeol Sci 35:2,797–2,804CrossRefGoogle Scholar
  18. Danukalova GA (2010) The refined Quaternary Stratigraphic Scale of the Fore-Urals and main events in southern Urals Region. Stratigr Geol Correl 18:331–348CrossRefGoogle Scholar
  19. De Candolle AP (1883) Origine des Plantes Cultivées. Baillière, ParisGoogle Scholar
  20. Dirksen VG, van Geel B (2004) Mid to late Holocene climate change and its influence on cultural development in south central Siberia. In: Scott EM et al (eds) Impact of the Environment on Human Migration in Eurasia. Kluwer Academic Publishers, Dordrecht, pp 291–307CrossRefGoogle Scholar
  21. Dörfler W (1990) Die Geschichte des Hanfanbaus in Mitteleuropa aufgrund palynologischer Untersuchungen und von Großrestnachweisen. Prähistorische Zeitschrift 65:218–244CrossRefGoogle Scholar
  22. Douda J, Doudová J, Drašnarová A et al (2014) Migration patterns of subgenus Alnus in Europe since the Last Glacial Maximum: a systematic review. PLoS One 9(2):e88709CrossRefGoogle Scholar
  23. Edwards KJ, Whittington G (1990) Palynological evidence for the growing of Cannabis sativa L. (hemp) in medieval and historical Scotland. Trans Inst Br Geogr 15:60–69CrossRefGoogle Scholar
  24. Ehlers J, Gibbard PL (2007) The extent and chronology of Cenozoic global glaciation. Quat Int 164–165:6–20CrossRefGoogle Scholar
  25. Engelmark R (1976) The vegetation history of the Umeå area during the past 4000 years. Early Norrl 9:73–111Google Scholar
  26. Feliner GN (2011) Southern European glacial refugia: a tale of tales. Taxon 60:365–372Google Scholar
  27. Firbas F (1937) Der pollenanalytische Nachweis des Getreideanbaus. Zeitschrift für Botanik 31:447–478Google Scholar
  28. Fleming MP, Clarke RC (1998) Physical evidence for the antiquity of Cannabis sativa L. J Int Hemp Assoc 5:80–92Google Scholar
  29. French CN, Moore PD (1986) Deforestation, Cannabis cultivation and schwingmoor formation at Cors Llyn (Llyn Mire), Central Wales. New Phytol 102:469–482CrossRefGoogle Scholar
  30. Fries M (1958) Vegetationsutveckling och odlingshistoria i Varnhemstrakten: en pollenanalytisk undersökning i Västergötland. Acta Phytogeographica Suecica 39:1–63Google Scholar
  31. Fries M (1962) Studies of the sediments and the vegetational history in the Ösbysjön basin, north of Stockholm. Oikos 13:76–96CrossRefGoogle Scholar
  32. Fröman I (1939) Die Hölzer des Rades und der Hopfenfund. In: von Post L, Oldeberg A, Fröman I (eds) Ein eisenzeitliches Rad aus dem Filaren-See in Södermanland, Schweden. Wahlström & Widstrand, Stockholm, pp 89–98Google Scholar
  33. Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20:1–86CrossRefGoogle Scholar
  34. Furtwängler A (1883) Der Goldfund von Vettersfelde. Reimer, BerlinGoogle Scholar
  35. Gaillard MJ, Berglund BE (1988) Land-use history during the last 2700 years in the area of Bjäresjö, Sweden. In: Berks HH et al (eds) The cultural landscape—past, present and future. Cambridge University Press, Cambridge, pp 409–425Google Scholar
  36. Giesecke T, Davis B, Brewer S et al (2014) Towards mapping the late quaternary vegetation change of Europe. Veget Hist Archaeobot 14:75–86CrossRefGoogle Scholar
  37. Godwin B (1967) Pollen analytic evidence for the cultivation of Cannabis in England. Rev Paleobot Palynol 4:71–80CrossRefGoogle Scholar
  38. Hall A, Kenward H, Large F (1995) Biological remains from a medieval ‘pond’ at Higher Lane, Fazakerley, north Liverpool, Merseyside (site code FAZ94). Rep Environ Archaeol Unit York 96/5:1–29Google Scholar
  39. Hauschild S (1991) Pollenanalytische Untersuchungen zur Vegetations- und Siedlungsgeschichte am Höherer See in Oberösterreich. Doctoral thesis, University of Göttingen, GöttingenGoogle Scholar
  40. Herder FG (1892) Plantae Raddeanae apetalae V. Acta Horti Petropolitani 12:31–132Google Scholar
  41. Herodotus (2007) The landmark Herodotus: the histories In: Strassler RB, Purvis AL (eds) Pantheon Books, New YorkGoogle Scholar
  42. Hicks S, Birks HJB (1996) Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. Veget Hist Archaeobot 5:257–272CrossRefGoogle Scholar
  43. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13,000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  44. Ivanov DA, Bozukov VS, Koleva-Rekalova EK (2007) Late Miocene flora from SE Bulgaria: vegetation, landscape and climate reconstruction. Phytologia Balcanica 13:281–292Google Scholar
  45. Keppen T (1886) Догадка о происхожденіи большинства индоевропейскихъ названій конопли. Журнал Министерства народнаго просвěщенія 245:73–86Google Scholar
  46. King RA, Ferris C (1998) Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol Ecol 7:1,151–1,161CrossRefGoogle Scholar
  47. Kreuz A, Marinova E, Schäfer E, Wiethold J (2005) A comparison of early Neolithic crop and weed assemblages from the Linearbandkeramik and the Bulgarian Neolithic cultures: differences and similarities. Veget Hist Archaeobot 14:237–258CrossRefGoogle Scholar
  48. Kuneš P (2008) Human-driven and natural vegetation changes of the last glacial and early Holocene. Doctoral thesis, Charles University Prague, PragueGoogle Scholar
  49. Kuneš P, Pokorný P, Šída P (2008) Detection of the impact of early Holocene hunter-gatherers on vegetation in the Czech Republic using multivariate analysis of pollen data. Veget Hist Archaeobot 17:269–287CrossRefGoogle Scholar
  50. Lamarck JB (1785) Encyclopédie Méthodique. Botanique Tome premier 2:345–752Google Scholar
  51. Lee CY, Liew PM (2010) Late quaternary vegetation and climate changes inferred from a pollen record of Dongyuan Lake in southern Taiwan. Palaeogeogr Palaeoclimatol Palaeoecol 287:58–66CrossRefGoogle Scholar
  52. Linnaeus C (1737) Hortus Cliffortianus. AmsterdamGoogle Scholar
  53. Lisci M, Pacini E (1993) Plants growing on the walls of Italian towns. 2: Reproductive ecology. Giornale Botanico Italiano 127:1,053–1,078CrossRefGoogle Scholar
  54. Liu HY, Liu K, Wei FL (2013) Artemisia pollen-indicated steppe distribution in southern China during the Last Glacial Maximum. J Palaeogeogr 2:297–305Google Scholar
  55. Long TW, Wagner M, Demske D et al (2017) Cannabis in Eurasia: origin of human use and Bronze age trans-continental connections. Veget Hist Archaeobot 26:245–258CrossRefGoogle Scholar
  56. López-García JM, Blain HA, Allué E et al (2010) First fossil evidence of an “interglacial refugium” in the Pyrenean region. Naturwissenshaften 97:753–761CrossRefGoogle Scholar
  57. Maher LJ (1977) Palynological studies in the western arm of lake superior. Quat Res 7:14–44CrossRefGoogle Scholar
  58. McPartland JM, Guy GW (2016) Cannabis may have evolved in the northeastern Tibetan Plateau, based on an interdisciplinary study of genetics, fossil pollen, and ecology. In: Proceedings of the 26th annual symposium on the cannabinoids. International Cannabinoid Research Society, Research Triangle Park, p 61Google Scholar
  59. McPartland JM, Guy GW (2017) Models of Cannabis taxonomy, cultural bias, and conflicts between scientific and vernacular names. Bot Rev 83:327–381CrossRefGoogle Scholar
  60. McPartland JM, Hegman W (2017) Cannabis utilization and diffusion patterns in prehistoric Europe: a critical analysis of archaeological evidence. Veget Hist Archaeobot. Google Scholar
  61. McPartland JM, Guy GW, Hegman W (2013) Distribution of Cannabis sativa in Europe based on fossil pollen and ecological analyses. In: Proceedings of the 23th annual symposium on the cannabinoids. International Cannabinoid Research Society, Research Triangle Park, p 1Google Scholar
  62. Megaw JVS (1966) The vix burial. Antiquity 40(157):38–44CrossRefGoogle Scholar
  63. Mercuri AM, Accorsi CA, Mazzanti MB (2002) The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veget Hist Archaeobot 11:263–276CrossRefGoogle Scholar
  64. Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol 289:44–61CrossRefGoogle Scholar
  65. Palamarev E (1982) Неогенската карпофлора на Мелнишкия басейн. Paleontol Stratigr Lithol 16:3–43Google Scholar
  66. Peglar SM (1993) The development of the cultural landscape around Diss Mere, Norfolk, UK, during the past 7000 years. Rev Palaeobot Palynol 76:1–47CrossRefGoogle Scholar
  67. Piličiauskas G. Kisielienė D, Piličiauskas G (2017) Deconstructing the concept of Subneolithic farming in the southeastern Baltic. Veget Hist Archaeobot 26:183–193CrossRefGoogle Scholar
  68. Pokorný P, Chytrý M, Juřičková L et al (2015) Mid-Holocene bottleneck for central European dry grasslands: did steppe survive the forest optimum in northern Bohemia. Czech Republic? Holocene 25:716–726CrossRefGoogle Scholar
  69. Prentice IC, Guiot J, Huntley B et al (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194CrossRefGoogle Scholar
  70. Punt W, Malotaux M (1984) Cannabaceae, Moraceae and Urticaceae. Rev Palaeobot Palynol 42:23–44CrossRefGoogle Scholar
  71. Purkyně JE (1830) De cellulis antherarum fibrosis, nec non de granorum pollinarium formis commentatio phytotomico. J. D. Gruesonius, VratislaviaeGoogle Scholar
  72. Ralska-Jasiewiczowa M, van Geel B (1998) Human impact on the vegetation of the Lake Gościąż surroundings in prehistoric and early-historic times. In: Ralska-Jasiewiczowa M et al (eds) Lake Gościąż, central Poland. A monographic study, Part 1. Polish Academy of Sciences, Kraków, pp 267–294Google Scholar
  73. Riehl S, Pustovoytov K (2006) Comment on van Geel et al. J Archaeol Sci 31 (2004) “Climate change and the expansion of the Scythian culture after 850 bc: a hypothesis”. J Archaeol Sci 33:143–145CrossRefGoogle Scholar
  74. Rimantienė R (1979) Šventoji I: Narvos kultūros gyvenvietės. Mokslas, VilniusGoogle Scholar
  75. Rimantienė R (1992) Neolithic hunter-gathers at Šventoji in Lithuania. Antiquity 66:367–376CrossRefGoogle Scholar
  76. Scholz H (1957) Der wilde Hanf als Ruderalpflanze Mitteleuropas. Verhandlungen des Botanischen Vereins für die Provinz Brandenburg 83(97):61–64Google Scholar
  77. Schübeler FC (1875) Die Pflanzenwelt Norwegens. Ein Beitrag zur Natur-und Culturgeschichte Nord-Europas. Brøgger, ChristianiaGoogle Scholar
  78. Scopoli GA (1772) Flora Carniolica, Tom. II, 2 edn. Krauss, Vienna ndGoogle Scholar
  79. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435CrossRefGoogle Scholar
  80. Tarasov P, Webb T, Andreev AA et al. (1998). Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1,029–1,053Google Scholar
  81. Tarasov PE, Volkova VS, Webb T et al (2000) Last Glacial Maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620CrossRefGoogle Scholar
  82. Thiébaut de Berneaud A (1835) Chanvre. In: Guérin-Méneville FE (ed) Dictionnaire pittorosque d’histoire naturelle et des phénomènes de la nature, Tome 2. De Cosson, Paris, pp 87–89Google Scholar
  83. Tweddle JC (2000) A high resolution palynological study of the Holocene vegetational development of central Holderness, Eastern Yorkshire, with particular emphasis on the detection of prehistoric human activity. Doctoral thesis, University of Sheffield, SheffieldGoogle Scholar
  84. Van Geel B, Bokovenko NA, Burova ND et al (2004) Climate change and the expansion of the Scythian culture after 850 bc: a hypothesis. J Archaeol Sci 31:1,735–1,742CrossRefGoogle Scholar
  85. Van Zant KL, Webb T, Peterson GM et al (1979) Increased Cannabis/Humulus pollen, an indicator of European agriculture in Iowa. Palynology 3:227–233CrossRefGoogle Scholar
  86. Vavilov NI (1926) The origin of the cultivation of “primary” crops, in particular cultivated hemp. Труды по прикладной ботанике, генетике и селекции 16:221–233Google Scholar
  87. Walker MJC, Berkelhammer M, Björck S et al (2012) Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy. J Quat Sci 27:649–659CrossRefGoogle Scholar
  88. Whittington G, Edwards KJ (1989) Problems in the interpretation of Cannabaceae pollen in the stratigraphic record. Pollen Spores 31:79–96Google Scholar
  89. Whittington G, Gordon AD (1987) The differentiation of the pollen of Cannabis sativa L. from that of Humulus lupulus L. Pollen Spores 29:111–120Google Scholar
  90. Whittington G, Jarvis J (1986) Kilconquhar Loch, Fife: an historical and palynological investigation. Proc Soc Antiqu Scotl 116:413–428Google Scholar
  91. Wilson DG (1975) Plant remains from the Graveney boat and the early history of Humulus lupulus L. in W. Europe. New Phytol 75:627–648CrossRefGoogle Scholar
  92. Winterschmidt JS (1818) Naturgetreue Darstellung aller inn- und ausländischen Material-Samen und getrockneten Früchte. NürnbergGoogle Scholar
  93. Zhou B, Shen CD, Sun WD et al (2007) Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 252:617–625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of VermontBurlingtonUSA
  2. 2.GW PharmaceuticalsCambridgeUK
  3. 3.Department of GeographyMiddlebury CollegeMiddleburyUSA

Personalised recommendations