Insights into the late Holocene vegetation history of the East European forest-steppe: case study Sudzha (Kursk region, Russia)

  • Lyudmila S. ShumilovskikhEmail author
  • Vlasta Ye. Rodinkova
  • Aleksandra Rodionova
  • Alla Troshina
  • Ekaterina Ershova
  • Elena Novenko
  • Elya Zazovskaya
  • Svetlana A. Sycheva
  • Dmitry I. Kiselev
  • Frank Schlütz
  • Jens Schneeweiß
Original Article


Today, the East European forest-steppe is an agricultural landscape with very few remains of its former natural vegetation. The history of the transformation from natural vegetation to a human-made landscape in the area of Sudzha (Kursk region, Russia) is studied here. We compare the off-site pollen record Sudzha with three on-site pollen records obtained from the archaeological site Kurilovka-2. The sediment core Sudzha covering the last 2,500 years was taken from an oxbow lake in an area with archaeological sites of the early Slavonic period (3rd–8th centuries ce). The Sudzha pollen record indicates dominance of broadleaf forests and meadow steppes in the area from 2,500 to 200 cal year bp with two major settlement phases one between ~ 2,000 and 1,600 cal year bp (~ 50 bce to 350 ce) and the other between 1,100 and 600 cal year bp (850 and 1350 ce) followed by a total deforestation and transformation to an agricultural landscape over the last 200–300 years. Similar changes in the last 300–400 years are indicated by the three on-site pollen records. It is noteworthy, however, that the record Sudzha does not provide an intensive signal of human impact during the 5th–8th centuries ce. This points to a quite restricted spatial influence of the Early Slavonic settlements on the vegetation, leading to a relatively low contribution of palynological anthropogenic indicators to the regional pollen rain signal.


East European forest-steppe Palynology Vegetation history Non-pollen palynomorphs Anthropogenic impact Late Holocene 



The authors are grateful to Maria Belen Tomaselli for sampling and lab preparation of pollen from the Sudzha sediment core, the editor and two anonymous reviewers for constructive comments and Laura Sutcliffe for polishing the English. This study was partly supported by the Russian Foundation for Basic Research, research projects 16-35-60083 and 16-36-00293, and by the Georg-August-University of Göttingen (Germany). Reconstruction of forest coverage performed by E. Novenko was supported by Russian Science Foundation (Grant 16-17-10045).

Supplementary material

334_2018_711_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)


  1. Babin IP (2015) Istoriya osnovaniya goroda Sudzhi [History of Sudzha city foundation]. In: Razdorskiy AI (ed) Sudzha i sudzhane v otechastvennoy i zarubezhnoy istorii i kul’ture [Sudzha and its population in Russian and foreign history and culture]. Kursk University, Kursk, pp 90–107 (in Russian) Google Scholar
  2. Berezhnaya SV (2015) Byt russkogo i ukrainskogo naseleniya Sudzhanskogo uezda v kontse XVIII—nachale XX v. [Daily routine of Russian and Ukrainian populations of Sudzha uezd at the end of XVIII—beginning of XX cent.]. In: Razdorskiy AI (ed) Sudzha i sudzhane v otechastvennoy i zarubezhnoy istorii i kul’ture [Sudzha and its population in Russian and foreign history and culture]. Kursk University, Kursk, pp 172–181Google Scholar
  3. Beug HJ (2004) Leitfaden der Pollenbestimmung. Pfeil, MünchenGoogle Scholar
  4. Bianchi GG, McCave N (1999) Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397:515–517CrossRefGoogle Scholar
  5. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  6. Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslová Z, Schlüter H, Weber H (2003) Map of the Natural Vegetation of Europe. Landwirtschaftsverlag, MünsterGoogle Scholar
  7. Borisova O, Sidorchuk A, Panin A (2006) Palaeogeography of the Seim River basin, Mid-Russian Upland, based on palaeochannel morphology and palynological data. Catena 66:53–73CrossRefGoogle Scholar
  8. Chernova GM (2004) Sporovo-pyl’tsevoy analiz otlotzheniy pleistotsena-golotsena. St. Petersburg University, St. Petersburg (in Russian) Google Scholar
  9. Chichagova OA, Cherkinsky AE (1993) Problems in radiocarbon dating of soils. Radiocarbon 35:351–362CrossRefGoogle Scholar
  10. Chistiakov AYu (2015) Traditsionnye promysly i remesla Sudzhi i Sudzhanskogo uezda v kontse XVIII–XIX v. [Traditional crafts of Sudzha and Sudzha uezd at the end of XVIII–XIX cent.]. In: Razdorskiy AI (ed) Sudzha i sudzhane v otechastvennoy i zarubezhnoy istorii i kul’ture [Sudzha and its population in Russian and foreign history and culture]. Kursk University, Kursk, pp 182–187 (in Russian) Google Scholar
  11. Dimbleby GW (1985) The palynology of archaeological sites. Academic Press, LondonGoogle Scholar
  12. Dombrovskaya A, Korenev MM, Turemnov SN (1959) Atlas of Plant Remains in Peat. Nauka, Moscow-Leningrad (in Russian) Google Scholar
  13. Erdtmann G (1960) The acetolysis method. Svensk Botanisk Tidskrift 54:561–564Google Scholar
  14. Ershova EG (2017) Rekonstruktsiya prirodnoy sredy na osnove analiza bolotnykh otlozheniy v basseine verkhnego techeniya Vorskly (Belgorodskaya oblast). Bulleten Moskovskogo obshchestva ispytateley prirody. Otdel Biol 122:71–79 (in Russian) Google Scholar
  15. Ershova EG, Krenke NA (2014) Izuchenie prirodnykh i kulturnykh landshaftov zheleznogo veka v doline Moskvy-reki metodami palinologii i arkheologii. Vestnik arkheologii. Antropologii i Entografii 3:159–172 (in Russian) Google Scholar
  16. Gorbanenko SA, Pashkevich GO (2010) Zemlerobstvo davnikh slavian. Akademperiodika, Kiev (in Ukrainian) Google Scholar
  17. Grichuk VP (1938) Novyi metod obrabotki osadochnyh porod dlia tseley pyl’tsevogo analiza. Trudy Soveshchaniya Sektsii INQUA 3:159–165 (in Russian) Google Scholar
  18. Grichuk VP (1940) Metodika obrabotki osadochnykh porod bednykh organicheskimi ostatkami dlia tseley pyl’tsevogo analiza. Problemy Fizichskoy Geografii 8:53–58 (in Russian) Google Scholar
  19. Hansen M, de Fries RS, Townshend JRG, Carroll M, Dimiceli C, Sohlberg RA (2003) Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interact 7:1–15CrossRefGoogle Scholar
  20. Juggins S (2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon TyneGoogle Scholar
  21. Kashkin AV (2000) Arkheologicheskaya karta Rossii. Kurskaya oblast. Chast 2. Institute of Archaeology of the Russian Academy of Sciences Press, Moscow (in Russian) Google Scholar
  22. Katz NJ, Katz SW, Skobejewa E (1977) Atlas rastitel’nyh ostatkov v torfah (Atlas of Plant Remnants in Peat). Nedra, Leningradskoje otdelenie, Moscow (in Russian) Google Scholar
  23. Khotinsky NA (1993) Anthropogenic changes in the landscapes of the Russian Plain during the Holocene. Grana 2:70–74CrossRefGoogle Scholar
  24. Lapshina ED (2003) Flora bolot yuga-vostoka Zapadnoy Sibiri. Publishing house of Tomsk University, Tomsk (in Russian) Google Scholar
  25. Lardín C, Pacheco S (2015) Helminths: handbook for identification and counting of parasitic helminths eggs in urban wastewater. IWA Publishing, LondonGoogle Scholar
  26. Le Bailly M, Bouchet F (2010) Ancient dicrocoeliosis: occurrence, distribution and migration. Acta Trop 115:175–180CrossRefGoogle Scholar
  27. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the “Little Ice Age” and “Medieval Climate Anomaly”, Science 362:1,256–1,260CrossRefGoogle Scholar
  28. Moore PD, Webb JA, Collinson ME (1999) Pollen Analysis. Blackwell Science, OxfordGoogle Scholar
  29. Nakagawa T, Tarasov P, Kotoba N, Gotanda K, Yasuda Y (2002) Quantitative pollen-based climate reconstruction in Japan: application to surface and late Quaternary spectra. Quat Sci Rev 21:2,099–2,113CrossRefGoogle Scholar
  30. Novenko EY, Eremeeva AP, Chepurnaya AA (2014) Reconstruction of Holocene vegetation, tree cover dynamics and human disturbances in central European Russia, using pollen and satellite data sets. Veget Hist Archaeobot 23:109–119CrossRefGoogle Scholar
  31. Novenko EY, Tsyganov AN, Volkova EM, Babeshko KV, Lavrentiev NV, Payne RJ, Mazei YA (2015) The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quat Res 83:459–468CrossRefGoogle Scholar
  32. Novenko EY, Tsyganov AN, Rudenko OV et al (2016) Mid- and late- Holocene vegetation history, climate and human impact in the forest-steppe ecotone of European Russia: new data and a regional synthesis. Biodivers Conserv 25:2,453–2,472CrossRefGoogle Scholar
  33. Overpeck JT, Webb T III, Prentice ICA (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108CrossRefGoogle Scholar
  34. Pals JP, van Geel B, Delfos A (1980) Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (prov of Noord-Holland). Rev Palaeobot Palynol 30:371–418CrossRefGoogle Scholar
  35. Panin A, Adamiec G, Buylaert J-P, Matlakhova E, Moska P, Novenko E (2017) Two Late Pleistocene climate-driven incision/aggradation rhythms in the middle Dnieper River basin, west-central Russian Plain. Quat Sci Rev 166:266–288CrossRefGoogle Scholar
  36. Patterson WP, Dietrich KA, Holmden C, Andrews JT (2010) Two millennia of North Atlantic seasonality and implications for Norse colonies. PNAS 107:5,306–5,310CrossRefGoogle Scholar
  37. Radiush OA (2015) Issledovaniya pamiatnikov rubezha pozdney antichnosti i rannego srednevekov’ya (III-V vv. n.e.) v verkhov’yakh reki Sudzha [Study of late antique to early Middle Ages sites (III-V cent. AD) in the upper Sudzha River]. In: Razdorskiy AI (ed) Sudzha i sudzhane v otechastvennoy i zarubezhnoy istorii i kul’ture [Sudzha and its population in Russian and foreign history and culture]. Kursk University, Kursk, pp 18–39 (in Russian) Google Scholar
  38. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 andMarine13 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  39. Revelles J, van Geel B (2016) Human impact and ecological changes in lakeshore environments. The contribution of non-pollen palynomorphs in Lake Banyoles (NE Iberia). Rev Palaeobot Palynol 232:81–97CrossRefGoogle Scholar
  40. Revelles J, Burjachs F, van Geel B (2016) Pollen and non-pollen palynomorphs from the Early Neolithic settlement of La Draga (Girona, Spain). Rev Palaeobot Palynol 225:1–20CrossRefGoogle Scholar
  41. Rodinkova VYe, Sycheva SA, Shumilovskikh LS, Ershova EG, Ponomarenko EV, Batrachenko EA (2017) Pochvy i landshafty tsentra Russkoy ravniny v ranneslavianskoe vremia (po materialam poseleniya Kurilovka-2 v Sudzhanskom rayone Kurskoy oblasti). Materialy Vserossiyskoy mezhdistsiplinarnoy nauchnoy konferentsii s mezhdunarodnym uchastiem “Paleopochvy, paleoecologiya, paleoeconomika”, Pushchino, 24–24.05.2017. Pushchino, pp 162–167 (in Russian) Google Scholar
  42. Rodríguez-Zorro PA, da Costa ML, Behling H (2017) Mid-Holocene vegetation dynamics with an early expansion of Mauritia flexuosa palm trees inferred from the Serra do Tepequém in the savannas of Roraima State in Amazonia, northwestern Brazil. Veget Hist Archaeobot 26:455–468CrossRefGoogle Scholar
  43. Shumilovskikh LS, Novenko EY, Giesecke T (2017) Long-term dynamics of the East European forest-steppe ecotone. J Veget Sci 29:416–426CrossRefGoogle Scholar
  44. Spiridonova EA (1991) Evolutsiya rastitelnogo pokrova basseina Dona v verkhnem Pleistotsene—Golotsene (Vegetation changes of the Don River basin in the upper Pleistocene and Holocene). Nauka, Moscow (in Russian) Google Scholar
  45. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  46. Terpylovsky RB, Gorbanenko SA (2010) Agriculture of habitants of settlement Oleksandrivka I. Arkheologiya i davnia istoriya Ukrainy 4:137–145 (in Ukrainian) Google Scholar
  47. Torresan M (1987) The use of sodium polytungstate in heavy mineral separations. U.S. Geological Survey Open-File Report 87–590Google Scholar
  48. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 1–17Google Scholar
  49. Van Geel B, Hallewas DP, Pals JP (1982) A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev Palaeobot Palynol 38:269–335CrossRefGoogle Scholar
  50. Van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands). Rev Palaeobot Palynol 60:25–129CrossRefGoogle Scholar
  51. Van der Wiel AM (1982) A palaecological study of a section from the foot of the Hazendonk (Zuid-Holland), based on the analysis of pollen, spores and macroscopic remains. Rev Palaeobot Palynol 38:35–90CrossRefGoogle Scholar
  52. Wild EM, Steier P, Fischer P, Hoflmayer F (2013) 14С dating of humus acids from Bronze and Iron Age plant remains from the Eastern Mediterranean. Radiocarbon 55:599–607CrossRefGoogle Scholar
  53. Zazovskaya E, Shishkov V, Dolgikh A, Alexndrovskiy A, Skripkin V, Chichagova O (2017) Organic matter of cultural layers as a material for radiocarbon dating. Radiocarbon 59:1,931–1,944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lyudmila S. Shumilovskikh
    • 1
    • 2
    Email author
  • Vlasta Ye. Rodinkova
    • 3
  • Aleksandra Rodionova
    • 4
  • Alla Troshina
    • 5
  • Ekaterina Ershova
    • 6
    • 7
  • Elena Novenko
    • 8
    • 9
  • Elya Zazovskaya
    • 10
  • Svetlana A. Sycheva
    • 11
  • Dmitry I. Kiselev
    • 12
  • Frank Schlütz
    • 13
  • Jens Schneeweiß
    • 14
  1. 1.Department Palynology and Climate DynamicsGeorg-August-University GöttingenGöttingenGermany
  2. 2.Laboratory of Taxonomy and Phylogeny of Plants, Faculty of BiologyTomsk State UniversityTomskRussia
  3. 3.Department of Archaeology of the Migration Period and the Early Middle AgesInstitute of Archaeology of the Russian Academy of SciencesMoscowRussia
  4. 4.Department of Ecology and Environmental Studies, Institute of Ecology and GeographySiberian Federal UniversityKrasnoyarskRussia
  5. 5.Municipal Budget Organization “Kolomna Archaeology Centre”KolomnaRussia
  6. 6.Department Geobotany, Faculty of BiologyMoscow State UniversityMoscowRussia
  7. 7.Institute of International Relations, History and Oriental StudiesKazan Federal UniversityKazanRussia
  8. 8.Department of Physical Geography and Landscape Science, Faculty of GeographyM.V. Lomonosov Moscow State UniversityMoscowRussia
  9. 9.Laboratory of Evolutional GeographyInstitute of Geography, Russian Academy of ScienceMoscowRussia
  10. 10.Laboratory of Radiocarbon Dating & Electronic microscopyInstitute of Geography, Russian Academy of ScienceMoscowRussia
  11. 11.Department of Soil Geography and EvolutionInstitute of Geography, Russian Academy of ScienceMoscowRussia
  12. 12.Department of Preservation of Archaeological HeritageInstitute of Archaeology of the Russian Academy of SciencesMoscowRussia
  13. 13.Lower Saxony Institute for Historical Coastal ResearchWilhelmshavenGermany
  14. 14.Department Man and EnvironmentLeibniz Institute for the History and Culture of Eastern Europe (GWZO)LeipzigGermany

Personalised recommendations