Vegetation History and Archaeobotany

, Volume 26, Issue 6, pp 571–586 | Cite as

Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments

  • Fabian ReyEmail author
  • Erika Gobet
  • Jacqueline F. N. van Leeuwen
  • Adrian Gilli
  • Ulrike J. van Raden
  • Albert Hafner
  • Othmar Wey
  • Julia Rhiner
  • Daniela Schmocker
  • Jan Zünd
  • Willy Tinner
Original Article


Little is known about the timing and the vegetation dynamics shortly after the Last Glacial Maximum (LGM) on the Swiss Plateau 19,000–15,000 cal bp. Subsequent Late Glacial and Holocene vegetation changes are better known; however, it is unclear if the few available palynological and macrofossil records are able to capture the entire vegetation variability of the region. A new palaeoecological multi-proxy study using pollen, spores, charcoal and X-ray fluorescence (XRF) from Burgäschisee (Swiss Plateau, 465 m a.s.l.) is applied to reconstruct vegetation, fire and land use for the past 19,000 cal years. Steppe tundra vegetation established at c. 18,700 cal bp only c. 300 years after the end of the LGM and deglaciation. A shift from steppe tundra (Artemisia, Helianthemum) to shrub tundra (Betula nana, Salix, Juniperus) with sporadic tree Betula stands occurred around 16,000 cal bp, most likely in response to climate warming after the end of Heinrich event 1. Abundant spores of coprophilous fungi (Sporormiella, Cercophora) may reflect the presence of Pleistocene large herbivores (e.g. Mammuthus primigenius, Bison bonasus, Rangifer tarandus). Afforestation started more than 2,000 years later with Juniperus and tree Betula around 14,500 cal bp. Mixed Betula and Pinus sylvestris forests persisted until 10,800 cal bp, when mixed elm forests expanded into the region in response to climate warming. Around 8,200 cal bp, mesophilous Fagus sylvatica and Abies alba partly replaced more heliophilous species in the forests, when climate became less continental and more moist. Pollen of Cerealia, Plantago lanceolata and other crops and weeds suggest that agricultural activities became significant during the Neolithic around 6,500 cal bp (4550 cal bc). Archaeological findings from Neolithic pile dwellings around 5,950 cal bp (4000 cal bc) indicate local settlements around the lake. The lake sediments are laminated for most of the last c. 6,800 years. With two independent proxies (XRF and pollen), we can demonstrate that these laminations are annual, suggesting short-term mixing of the lake water due to a more open landscape in response to land use. Our study shows that the annually laminated (varved) sediments from Burgäschisee have a great potential for high-resolution multi-proxy analyses covering the past c. 6,800 years. They can provide accurate ages of cultural phases that might be compared with dendrochronologically dated evidence from lake dwellings.


Fire history Heinrich event 1 Human impact LGM Varves Vegetation history 



We thank Willi Tanner, Richard Niederreiter, André F. Lotter, Claire Rambeau, Marianne Steffen, Camilla Calò, Stéphanie Samartin, Elisa Vescovi, Stefanie Wirth, Stewart Bishop and Martin Tschanz for their help during the fieldwork, Florencia Oberli for her help in the laboratory and during the coring, Flavio S. Anselmetti for his support, Werner E. Stöckli for insisting on new basal ages to date deglaciation as well as the two reviewers for their valuable suggestions on the manuscript. This study was funded by the Swiss National Science Foundation (SNF 200021_149203/1 and PMPDP2-122945).


  1. Ambühl H, Stumm W (1984) Bericht über die Auswirkungen der Tiefenwasserableitung im Burgäschisee. EAWAGGoogle Scholar
  2. Ammann B (1989) Late-Quaternary palynology at Lobsigensee. Regional vegetation history and local lake development. Diss Bot 137:1–157Google Scholar
  3. Ammann B, Lotter AF (1989) Late-Glacial radiocarbon- and palynostratigraphy on the Swiss Plateau. Boreas 18:109–126CrossRefGoogle Scholar
  4. Ammann B, Tobolski K (1983) Vegetational development during the Late-Würm at Lobsigensee (Swiss Plateau). Studies in the late Quaternary of Lobsigensee 1. Rev Paléobiol 2:163–180Google Scholar
  5. Ammann B, Eicher U, Gaillard M-J, Haeberli W, Lister G, Lotter AF, Maisch M, Niessen F, Schlüchter C, Wohlfarth B (1994) The Würmian Late-glacial in lowland Switzerland. J Quat Sci 9:119–125CrossRefGoogle Scholar
  6. Ammann B, Gaillard M-J, Lotter AF (1996) Switzerland. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15000 years: regional syntheses of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 647–666Google Scholar
  7. Arn H (1945) Die Melioration des Gebietes um den Burgäschisee und die Seeabsenkung. Tierwelt 11:1–12Google Scholar
  8. Becker A, Ammann B, Anselmetti FS, Hirt AM, Magny M, Rachoud A-M, Sampietro G, Wüthrich C (2006) Paleoenvironmental studies on Lake Bergsee, Black Forest, Germany. Neu Jahrb Geol Paläont Abh 240:405–445Google Scholar
  9. Beckmann M (2004) Pollenanalytische Untersuchung der Zeit der Jäger und Sammler und der ersten Bauern an zwei Lokalitäten des Zentralen Schweizer Mittellandes. Diss Bot 390:1–223Google Scholar
  10. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  11. Berger A, Loutre M-F (1991) Insolation values for the climate of the last 10,000,000 years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  12. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  13. Bini A, Buoncristiani J-F, Couterrand S et al (2009) Die Schweiz während des letzteiszeitlichen Maximums (LGM) 1:500,000. Bundesamt für Landestopographie swisstopoGoogle Scholar
  14. Birks HJB (1968) The identification of Betula nana pollen. New Phytol 67:309–314CrossRefGoogle Scholar
  15. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  16. Birks HJB, Heegaard E (2003) Developments in age-depth modelling of Holocene stratigraphical sequences. PAGES News 11:7–8Google Scholar
  17. Birks HJB, Tinner W (2016) European tree dynamics and invasions during the Quaternary. In: Krumm F, Vítková L (eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, Freiburg, pp 22–43Google Scholar
  18. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  19. Bleicher N, Burger M (2015) Dendroarchäologie und Pfahlfeldanalyse. In: Bleicher N, Harb C (eds) Zürich-Parkhaus Opéra—Eine neolithische Feuchtbodenfundstelle. 1: Befunde, Schichten und Dendroarchäologie. Monographien der Kantonsarchäologie Zürich 48, Zürich/Egg, pp 100–146Google Scholar
  20. Clark JS, Merkt J, Müller H (1989) Post-glacial fire, vegetation and human history on the northern alpine forelands, South-Western Germany. J Ecol 77:897–925CrossRefGoogle Scholar
  21. Clegg BF, Tinner W, Gavin DG, Hu FS (2005) Morphological differentiation of Betula (birch) pollen in northwest North America and its palaeoecological application. Holocene 16:791–803Google Scholar
  22. Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50CrossRefGoogle Scholar
  23. Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163CrossRefGoogle Scholar
  24. Ehlers J, Gibbard PL (2004) Quaternary glaciations—extent and chronology: Part I: Europe. Elsevier, AmsterdamGoogle Scholar
  25. Eicher U (1987) Die spätglazialen sowie die frühpostglazialen Klimaverhältnisse im Bereiche der Alpen: Sauerstoffisotopenkurven kalkhaltiger Sedimente. Geogr Helv 2:99–104CrossRefGoogle Scholar
  26. Fahlke JM (2009) Der Austausch der terrestrischen Säugetierfauna an der Pleistozän/Holozän-Grenze in Mitteleuropa. Dissertation, Universität BonnGoogle Scholar
  27. Federici PR, Granger DE, Ribolini A, Spagnolo M, Pappalardo M, Cyr AJ (2012) Last glacial maximum and the Gschnitz stadial in the Maritime Alps according to 10Be cosmogenic dating. Boreas 41:277–291CrossRefGoogle Scholar
  28. Finsinger W, Tinner W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297CrossRefGoogle Scholar
  29. Finsinger W, Tinner W, van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  30. Geyh MA, Merkt J, Müller H (1971) Sediment-, Pollen- und Isotopenanalysen an jahreszeitlich geschichteten Ablagerungen im zentralen Teil des Schleinsees. Arch Hydrobiol 69:366–399Google Scholar
  31. Gianotti F, Forno MG, Ivy-Ochs S, Kubik PW (2008) New chronological and stratigraphical data on the Ivrea amphitheatre (Piedmont, NW Italy). Quat Int 190:123–135CrossRefGoogle Scholar
  32. Gill JL, Williams JW, Jackson ST, Donnelly JP, Schellinger GC (2012) Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat Sci Rev 34:66–80CrossRefGoogle Scholar
  33. Gobet E, Tinner W (2012) Von der Ur- zur Kulturlandschaft. In: Meyerhans A (ed) Geschichte des Kantons Schwyz. 1: Zeiten und Räume, Frühzeit bis 1350. Historischer Verein des Kantons Schwyz. Chronos, Zürich, pp 37–57Google Scholar
  34. Gobet E, van Leeuwen JFN, Tinner W (2017) Vegetationsdynamik, Landnutzung und Siedlungstätigkeit im Einzugsgebiet der Seeufersiedlungen im Unteren Zürichseebecken. In: Bleicher N, Harb C (eds) Zürich-Parkhaus Opéra—Eine neolithische Feuchtbodenfundstelle. 3: Naturwissenschaftliche Analysen und Synthese. Monographien der Kantonsarchäologie Zürich 50, Zürich/Egg, pp 11–30Google Scholar
  35. Guthruf J, Zeh M, Guthruf-Seiler K (1999) Kleinseen im Kanton Bern. Haupt, Bern, pp 32–34Google Scholar
  36. Haas JN, Hadorn P (1998) Die Vegetations- und Kulturlandschaftsgeschichte des Seebachtals von der Mittelsteinzeit bis zum Frühmittelalter anhand von Pollenanalysen. In: Hasenfratz A, Schnyder M (eds) Das Seebachtal—Eine archäologische und paläoökologische Bestandsaufnahme. Forschungen im Seebachtal 1, Archäologie im Thurgau 4. Amt für Archäologie des Kantons Thurgau, Frauenfeld, pp 221–255Google Scholar
  37. Hadorn P (1992) Vegetationsgeschichtliche Studie am Nordufer des Lac de Neuchâtel: Pollenanalytische Untersuchungen im Loclat, in der Bucht von Hauterive/Saint-Blaise und in den neolithischen Ufersiedlungen von Saint-Blaise/Bain des Dames. Dissertation, Universität BernGoogle Scholar
  38. Hafner A, Suter PJ (2003) Das Neolithikum in der Schweiz. J Neolit Archaeol 5. Institut der Ur- und Frühgeschichte der Universität Kiel, KielGoogle Scholar
  39. Hafner A, Harb C, Amstutz M, Francuz J, Moll-Dau F (2012) Moosseedorf, Moossee Oststation, Strandbad—Strandbadneubau, Pfahlbauten und das älteste Boot der Schweiz. Archäologie Bern, Jahrbuch des Archäologischen Dienstes des Kantons Bern, pp 1–77Google Scholar
  40. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  41. Heiri O, Millet L (2005) Reconstruction of late glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44CrossRefGoogle Scholar
  42. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  43. Heiri O, Filippi ML, Lotter AF (2007) Lateglacial summer temperatures in the Trentino area (Northern Italy) as reconstructed by fossil chironomid assemblages in Lago di Lavarone (1100 m a.s.l.). Studi Trent Sci Nat Acta Geol 82:299–308Google Scholar
  44. Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional palaeoclimate records: Chironomid-based summer temperatures from the Alpine region. Holocene 25:137–149CrossRefGoogle Scholar
  45. Henne PD, Elkin C, Colombaroli D, Samartin S, Bugmann H, Heiri O, Tinner W (2013) Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic modeling. Landsc Ecol 28:819–833CrossRefGoogle Scholar
  46. Hodel C, Bachmann A (2011) Bronzezeit. In: Hodel C, von Burg A, Marti R, Bachmann A (eds) Archäologie des Oberaargaus—Ur- und Frühgeschichte 13,000 v. Chr. bis 700 n. Chr. Jahrbuch des Oberaargaus, Sonderband 6, Bern, pp 53–67Google Scholar
  47. Hofstetter S, Tinner W, Valsecchi V, Carraro G, Conedera M (2006) Lateglacial and Holocene vegetation history in the Insubrian Southern Alps—new indications from a small-scale site. Veget Hist Archaeobot 15:87–98CrossRefGoogle Scholar
  48. Ilyashuk BP, Gobet E, Heiri O et al. (2009) Lateglacial environmental and climatic changes at the Maloja Pass, Central Swiss Alps, as recorded by chironomids and pollen. Quat Sci Rev 28:1,340–1,353CrossRefGoogle Scholar
  49. Ivy-Ochs S, Schaefer J, Kubik PW, Synal HA, Schlüchter C (2004) Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geol Helv 97:47–55CrossRefGoogle Scholar
  50. Jäckli H (1962) Die Vergletscherung der Schweiz im Würmmaximum. Eclogae Geol Helv 55:285–294Google Scholar
  51. Juggins S (1991) Zone 1.2. Freeware. DOS program for the zonation (constrained clustering) of palaeoecological data. Accessed 28 Feb 2017
  52. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28:2,647–2,662CrossRefGoogle Scholar
  53. Kleinmann A, Merkt J, Müller H (2015) Sedimente des Degersees: Ein Umweltarchiv—Sedimentologie und Palynologie. In: Mainberger M, Merkt J, Kleinmann A (eds) Pfahlbausiedlungen am Degersee, Archäologische und naturwissenschaftliche Untersuchungen. Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart. Theiss, Darmstadt, pp 409–471Google Scholar
  54. Kutzbach JE, Webb III T (1993) Conceptual basis for understanding Late-Quaternary climates. In: Wright HE Jr, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, pp 5–11Google Scholar
  55. Larocque I, Finsinger W (2008) Late-glacial chironomid-based temperature reconstructions for Lago Piccolo di Avigliana in the southwestern Alps (Italy). Palaeogeogr Palaeoclimatol Palaeoecol 257:207–223CrossRefGoogle Scholar
  56. Larocque-Tobler I, Heiri O, Wehrli M (2010) Lateglacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. J Paleolimnol 43:649–666CrossRefGoogle Scholar
  57. Lauber K, Wagner G, Gygax A (2014) Flora helvetica, 5th edn. Haupt, BernGoogle Scholar
  58. Le Tensorer J-M, Niffeler U (1993) SPM I, Paläolithikum und Mesolithikum. Verlag Schweizerische Gesellschaft für Ur- und Frühgeschichte, BaselGoogle Scholar
  59. Litt T, Schölzel C, Kühl N, Brauer A (2009) Vegetation and climate history in the Westeifel Volcanic Field (Germany) during the past 11000 years based on annually laminated lacustrine maar sediments. Boreas 38:679–690CrossRefGoogle Scholar
  60. Lotter AF (1989) Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquat Sci 51:19–30CrossRefGoogle Scholar
  61. Lotter AF (1999) Late-glacial and Holocene vegetation history and dynamics as evidenced by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee (Central Switzerland). Veget Hist Archaeobot 8:165–184CrossRefGoogle Scholar
  62. Lotter AF, Zbinden H (1989) Late-Glacial pollen analysis, oxygen-isotope record, and radiocarbon stratigraphy from Rotsee (Lucerne), Central Swiss Plateau. Eclogae Geol Helv 82:191–202Google Scholar
  63. Lotter AF, Merkt J, Sturm M (1997) Differential sedimentation versus coring artifacts: a comparison of two widely used piston-coring methods. J Paleolimnol 18:75–85CrossRefGoogle Scholar
  64. Lotter AF, Heiri O, Brooks S, van Leeuwen JFN, Eicher U, Ammann B (2012) Rapid summer temperature changes during Termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland). Quat Sci Rev 36:103–113CrossRefGoogle Scholar
  65. Magny M, Bossuet G, Ruffaldi P, Leroux A, Mouthon J (2011) Orbital imprint on Holocene palaeohydrological variations in west-central Europe as reflected by lake-level changes at Cerin (Jura Mountains, eastern France). J Quat Sci 26:171–177CrossRefGoogle Scholar
  66. Mainberger M (2009) An early Bronze Age logboat from Degersee, Southern Germany. Int J Naut Archaeol 38:3–12CrossRefGoogle Scholar
  67. Marti R (2011) Frühmittelalter. In: Hodel C, von Burg A, Marti R, Bachmann A (eds) Archäologie des Oberaargaus—Ur- und Frühgeschichte 13,000 v. Chr. bis 700 n. Chr. Jahrbuch des Oberaargaus, Sonderband 6, Bern, pp 143–160Google Scholar
  68. Mol D, Tikhonov A, van der Plicht J et al (2006) Results of the CERPOLEX/Mammuthus expeditions on the Taimyr Peninsula, Arctic Siberia, Russian Federation. Quat Int 142–143:186–202CrossRefGoogle Scholar
  69. Monchamp M-E, Walser J-C, Pomati F, Spaak P (2016) Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl Environ Microbiol 82:6,472–6,482Google Scholar
  70. Monegato G, Ravazzi C, Donegana M, Pini R, Calderoni G, Wick L (2007) Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps). Quat Res 68:284–302CrossRefGoogle Scholar
  71. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  72. Müller-Beck H (2005a) Seeberg, Burgäschisee-Süd: Topographie und Stratigraphie. Acta Bernensia II, Teil 1. Stämpfli, BernGoogle Scholar
  73. Müller-Beck H (2005b) Seeberg, Burgäschisee-Süd: Bauten und Siedlungsgeschichte. Acta Bernensia II, Teil 2. Stämpfli, BernGoogle Scholar
  74. Nielsen E (2013) Response of the Lateglacial fauna to climatic change. Palaeogeogr Palaeoclimatol Palaeoecol 391(B):99–110CrossRefGoogle Scholar
  75. Pini R (2002) A high-resolution Late-glacial—Holocene pollen diagram from Pian di Gembro (Central Alps, Northern Italy). Veget Hist Archaeobot 11:251–262CrossRefGoogle Scholar
  76. Pini R, Ravazzi C, Aceti A, Castellano L, Perego R, Quirino T, Vallè F (2016) Ecological changes and human interaction in Valcamonica, the rock art valley, since the last deglaciation. Alpine Mediterr Quat 29:19–34Google Scholar
  77. Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6CrossRefGoogle Scholar
  78. Reber R, Akçar N, Ivy-Ochs S et al (2014) Timing of retreat of the Reuss glacier (Switzerland) at the end of the last glacial maximum. Swiss J Geosci 107:293–307CrossRefGoogle Scholar
  79. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et palynologie, MarseilleGoogle Scholar
  80. Reimer PJ, Bard E, Bayliss A et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887Google Scholar
  81. Reuther A, Fiebig M, Ivy-Ochs S, Kubik PW, Reitner J, Jerz H, Heine K (2011) Deglaciation of a large piedmont lobe glacier in comparison with a small mountain glacier—new insight from surface exposure dating. Two studies from SE Germany. Eiszeitalt Ggw 60:248–269Google Scholar
  82. Rey F, Schwörer C, Gobet E, Colombaroli D, van Leeuwen JFN, Schleiss S, Tinner W (2013) Climatic and human impacts on mountain vegetation at Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. Holocene 23:1,415–1,427CrossRefGoogle Scholar
  83. Richoz I (1998) Etude paléoécologique du lac de Seedorf (Fribourg, Suisse). Histoire de la végétation et du milieu durant l’Holocène: le rôle de l’homme et du climat. Diss Bot 293:1–177Google Scholar
  84. Robinson GS, Pigott Burney L, Burney DA (2005) Landscape paleoecology and megafaunal extinction in Southeastern New York State. Ecol Monogr 75:295–315CrossRefGoogle Scholar
  85. Rösch M, Lechterbeck J (2016) Seven Millennia of human impact as reflected in high resolution pollen profile from the profundal sediments of Litzelsee, Lake Constance region, Germany. Veget Hist Archaeobot 25:339–358CrossRefGoogle Scholar
  86. Ruosch M, Spahni R, Joos F, Henne PD, van der Knaap WO, Tinner W (2016) Past and future evolution of Abies alba forests in Europe—comparison of a dynamic vegetation model with palaeo data and observations. Glob Chang Biol 22:727–740CrossRefGoogle Scholar
  87. Samartin S, Heiri O, Lotter AF, Tinner W (2012) Climate warming and vegetation response after Heinrich event 1 (16,700–16,000 cal yr bp) in Europe south of the Alps. Clim Past 8:1,913–1,927CrossRefGoogle Scholar
  88. Samartin S, Heiri O, Kaltenrieder P, Kühl N, Tinner W (2016) Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy. Quat Sci Rev 143:107–119CrossRefGoogle Scholar
  89. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117CrossRefGoogle Scholar
  90. Smith HJ, Fischer H, Wahlen M, Mastroianni D, Deck B (1999) Dual modes of the carbon cycle since the last glacial maximum. Nature 400:248–250CrossRefGoogle Scholar
  91. Stevens LR, Ito E, Olson DEL (2000) Relationship of Mn-carbonates in varved lake-sediments to catchment vegetation in Big Watab Lake, MN, USA. J Paleolimnol 24:199–211CrossRefGoogle Scholar
  92. Stöckli WE (2016) Urgeschichte der Schweiz im Überblick (15,000 v. Chr.—Christi Geburt): Die Konstruktion einer Urgeschichte. Veröffentlichung der Archäologie Schweiz, BaselGoogle Scholar
  93. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  94. Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363CrossRefGoogle Scholar
  95. Stuiver M, Reimer P (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230CrossRefGoogle Scholar
  96. Swierczynski T, Lauterbach S, Dulski P, Delgado J, Merz B, Brauer A (2013) Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quat Sci Rev 80:78–90CrossRefGoogle Scholar
  97. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505CrossRefGoogle Scholar
  98. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549CrossRefGoogle Scholar
  99. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  100. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226CrossRefGoogle Scholar
  101. Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439CrossRefGoogle Scholar
  102. Van Geel B (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329CrossRefGoogle Scholar
  103. Van Raden UJ (2012) High-resolution Swiss lake records of climate change. Dissertation, ETH ZürichGoogle Scholar
  104. Van Raden UJ, Colombaroli D, Gilli A et al (2013) High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeogr Palaeoclimatol Palaeoecol 391(B):13–24CrossRefGoogle Scholar
  105. Van der Knaap WO, van Leeuwen JFN, Ammann B (2004) The first rise and fall of Fagus sylvatica and interactions with Abies alba at Faulenseemoos (Swiss Plateau) 6900–6000 cal yr bp. Acta Palaeobot 44:249–266Google Scholar
  106. Vescovi E, Ravazzi C, Arpeti E et al. (2007) Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669CrossRefGoogle Scholar
  107. Von Burg A, Hodel C, Bachmann A (2011) Paläolithikum und Mesolithikum. In: Hodel C, von Burg A, Marti R, Bachmann A (eds) Archäologie des Oberaargaus—Ur- und Frühgeschichte 13,000 v. Chr. bis 700 n. Chr. Jahrbuch des Oberaargaus, Sonderband 6, Bern, pp 13–29Google Scholar
  108. Wanner H, Beer J, Bütikofer J et al. (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1,791–1,828CrossRefGoogle Scholar
  109. Wehrli M, Tinner W, Ammann B (2007) 16,000 years of vegetation and settlement history from Egelsee (Menzingen, central Switzerland). Holocene 17:747–761CrossRefGoogle Scholar
  110. Welten M (1944) Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröffentlichungen des Geobotanischen Instituts Rübel Zürich 21:1–201Google Scholar
  111. Welten M (1946) Pollenprofil Burgäschisee. Ein Standard-Diagramm aus dem solothurnisch-bernischen Mittelland. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich, pp 101–111Google Scholar
  112. Welten M (1955) Pollenanalytische Untersuchungen über die neolithischen Siedlungsverhältnisse am Burgäschisee. Vorläufige Ergebnisse. In: Guyan W, Walter U (eds) Das Pfahlbauproblem. Birkhäuser, Basel, pp 61–88Google Scholar
  113. Welten M (1967) Bemerkungen zur paläobotanischen Untersuchung von vorgeschichtlichen Feuchtbodenwohnplätzen und Ergänzungen zur pollenanalytischen Untersuchung von Burgäschisee-Süd. In: Bandi HG, Müller-Beck H (eds) Seeberg Burgäschisee-Süd. Teil 4: Chronologie und Umwelt. Acta Bernensia II. Stämpfli, Bern, pp 9–20Google Scholar
  114. Welten M (1982) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern-Wallis. Denkschr Schweiz Natforsch Ges 95:1–104Google Scholar
  115. Wetzel RG (2001) Limnology: lake and river ecosystems. 3rd edn. Elsevier Science, USAGoogle Scholar
  116. Wey O (2012) Die Cortaillod-Kultur am Burgäschisee: Materialvorlage und Synthese zu den neolithischen Fundkomplexen von Burgäschisee-Ost, -Südwest, -Süd und -Nord. Stämpfli, BernGoogle Scholar
  117. Wick L (1996) Late-glacial and early-Holocene palaeoenvironments in Brianza, N Italy. Il Quaternario 9:653–660Google Scholar
  118. Wick L (2000) Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeogr Palaeoclimatol Palaeoecol 159:231–250CrossRefGoogle Scholar
  119. Wirsig C, Zasadni J, Christl M, Akçar N, Ivy-Ochs S (2016) Dating the onset of LGM ice surface lowering in the High Alps. Quat Sci Rev 143:37–50CrossRefGoogle Scholar
  120. Wyss R (1952) Fürsteiner-Seeberg, eine spätjungpaläolithische Freilandstation. Jahrb Schweiz Ges für Urgesch 42:133–154Google Scholar
  121. Wyss R (1953) Beiträge zur Typologie der Paläolithisch-Mesolithischen Übergangsformen im Schweizerischen Mittelland. Schriften des Institutes für Ur- und Frühgeschichte der Schweiz, BaselGoogle Scholar
  122. Zolitschka B (1998) A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments. Geomorphology 22:1–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fabian Rey
    • 1
    • 2
    Email author
  • Erika Gobet
    • 1
    • 2
  • Jacqueline F. N. van Leeuwen
    • 1
    • 2
  • Adrian Gilli
    • 3
  • Ulrike J. van Raden
    • 3
  • Albert Hafner
    • 2
    • 4
  • Othmar Wey
    • 2
    • 4
  • Julia Rhiner
    • 1
  • Daniela Schmocker
    • 1
  • Jan Zünd
    • 1
  • Willy Tinner
    • 1
    • 2
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Geological InstituteETH ZurichZurichSwitzerland
  4. 4.Institute of Archaeological SciencesUniversity of BernBernSwitzerland

Personalised recommendations