Vegetation History and Archaeobotany

, Volume 26, Issue 5, pp 513–526 | Cite as

Cultivation with deliberation: cereals and their growing conditions in prehistory

  • Dagmar Dreslerová
  • Petr Kočár
  • Tomáš Chuman
  • Adéla Pokorná
Original Article


The subject of this study is the evaluation of the relationship between cereals grown in prehistory (ca. 5500 bcad 600) and environmental conditions during their cultivation on the land that is now the Czech Republic. Charred cereal macroremains were taken from 84 archaeological sites. The representation of species at individual sites was assessed with regard to site altitude, average temperature, precipitation, length of the growing season, soil types and soil productivity within a 1 km buffer zone around each archaeological site. The suitability of using present day environmental data to describe past environmental differences among archaeological sites was verified by expressing environmental conditions using Ellenberg indication values of macroremains of wild taxa. The results of the cereals-environmental conditions analysis show that the most important factor for the crop choice was the period of time of its cultivation. After eliminating the effect of time and length of the growing season, soil quality and altitude become conclusive variables, however with different importance in various periods. The main differences between the macroremain assemblages are represented by the varying proportions of cultivated wheats and barley. In the Neolithic (Proto–Eneolithic) there was no observable effect of environmental factors on the cereal composition. In the Middle Eneolithic–Middle Bronze Age soil type was the main factor in the selection of barley or emmer. In the Late Bronze–Early Iron Ages precipitation, altitude and Chernozems were the decisive factors influencing cereal cultivation while in the Late Iron Age–Migration Period heat load index, precipitation, and the proportion of Fluvisols were the primary determinants. It seems that prehistoric cereal varieties had ecological needs similar to present-day species and the selection of crops took place with respect to local conditions and an effort to achieve an optimum yield.


Prehistory Cereals Archaeobotany Environment Soils Arable farming 

Supplementary material

334_2017_609_MOESM1_ESM.xls (377 kb)
Supplementary material 1 (XLS 377 KB)


  1. Bakels C (1997) The beginning of manuring in western Europe. Antiquity 71:442–445CrossRefGoogle Scholar
  2. Bakels C (2005) Crops produced in the southern Netherlands and Northern France during the early medieval period: a comparison. Veget Hist Archaeobot 14:394–399CrossRefGoogle Scholar
  3. Bakels C (2009) The Western European loess belt. Agrarian history, 5300 BC–AD1000. Springer, New YorkGoogle Scholar
  4. Bakels C (2014) The choice of a crop and its underlying reasons: examples from western central Europe 500 BCE–CE 900. In: Chevalier A, Marinova E, Peña-Chocarro L (eds) Plants and people, choices and diversity through time. Oxbow Books, Oxford, pp 101–106Google Scholar
  5. Behre K-E, Jacomet S (1991) The ecological interpretation of archaeobotanical data. In: Van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 81–108Google Scholar
  6. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  7. Bishop RR, Church MJ, Rowly-Conwy PA (2009) Cereals, fruits and nuts in the Scottish Neolithic. Proc Soc Antiqu Scotl 139:47–103Google Scholar
  8. Bogaard A (2004) Neolithic farming in Central Europe. An archaeobotanical study of crop husbandry practices. Routledge, LondonGoogle Scholar
  9. Bogaard A (2012) Middening and manuring in Neolithic Europe: issues of plausibility, intensity and archaeological method. In: Jones RL (ed) Manure matters: Historical, archaeological and ethnographic perspectives. Ashgate Publishing, Farnham, pp 25–39Google Scholar
  10. Bogaard A, Fraser RA, Heaton THE et al (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci 110:12,589–12,594CrossRefGoogle Scholar
  11. Bouby L, Boissinot P, Marinval P (2011) Never mind the bottle. Archaeobotanical evidence of beer-brewing in Mediterranean France and the consumption of alcoholic beverages during the 5th century BC. Hum Ecol 39:351–360CrossRefGoogle Scholar
  12. Cappers RTJ (1995) A palaeoecological model for the interpretation of wild plant species. Veget Hist Archaeobot 4:249–257CrossRefGoogle Scholar
  13. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland. Groningen archaeological studies 4. Barkhuis, GroningenGoogle Scholar
  14. Charles M, Jones G, Hodgson JG (1997) FIBS in archaeobotany: functional interpretation of weed floras in relation to husbandry practices. J Archaeol Sci 24:1,151–1,161CrossRefGoogle Scholar
  15. Chevalier A, Marinova E, Peña-Chocarro L (eds) (2007) Plants and People: choices and diversity through time. Early agricultural remnants and technical heritage (EARTH): 8,000 years of resilience and innovation, vol 1. Oxbow Books, OxfordGoogle Scholar
  16. Contreras DA (ed) (2016) The archaeology of human-environment interactions: Strategies for investigating anthropogenic landscapes, dynamic environments, and climate change in the human past. Routledge, New YorkGoogle Scholar
  17. Demján P, Dreslerová D (2016) Modelling distribution of archaeological settlement evidence based on heterogeneous spatial and temporal data. J Archaeol Sci 69:100–109CrossRefGoogle Scholar
  18. Dobeš M, Metlička M (2014) Raný eneolit v jihozápadních Čechách. Archeologie západních Čech. Suppl. 1. Západočeské muzeum v Plzni, PlzeňGoogle Scholar
  19. Dreslerová D, Kočár P (2013) Trends in cereal cultivation in the Czech Republic from the Neolithic to the Migration period (5500 BC–AD 580). Veget Hist Archaeobot 22:257–268CrossRefGoogle Scholar
  20. Dreslerová D, Kočár P, Chuman T, Šefrna L, Poništiak Å (2013) Variety in cereal production in the Late Bronze and Early Iron Ages in relation to environmental conditions. J Archaeol Sci 40:1,988–2,000CrossRefGoogle Scholar
  21. Dreslerová D, Kočár P, Chuman T (2016) Pravěké osídlení, půdy a zemědělské strategie—Prehistoric societies, soils and agricultural strategies. Archeologické rozhledy 68:19–46Google Scholar
  22. Ellenberg H, Weber E, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Goltze, GöttingenGoogle Scholar
  23. Groot M, Lentjes D, Zeiler J (eds) (2013) Barely surviving or more than enough? The environmental archaeology of subsistence, specialisation and surplus food production. Sidestone Press, LeidenGoogle Scholar
  24. Gustafsson S (2000) Carbonized cereal grains and weed seeds in prehistoric houses—an experimental perspective. J Archaeol Sci 27:65–70CrossRefGoogle Scholar
  25. Gyulai F (2010) Archaeobotany in Hungary. Archeolingua, BudapestGoogle Scholar
  26. Haberle J, Mikysková J (2006) Relation of cereals yields and variability to soil-climate and production characteristics of districts of the Czech Republic. J Cent Eur Agric 7–4:661–668Google Scholar
  27. Hajnalová E (1989) Evidence of a carbonized loaf of bread and cereals from Bratislava—Devín. Slovenská Archeológia 37:89–104Google Scholar
  28. Hajnalová M, Dreslerová D (2010) Ethnobotany of einkorn and emmer in Romania and Slovakia: towards interpretation of archaeological evidence. Památky archeologické 101:169–202Google Scholar
  29. Halliday G, Beadle M (1983) Consolidated index to Flora Europaea. CUP Archive, CambridgeGoogle Scholar
  30. Halstead P, O´Shea J (1989) Introduction: cultural responses to risk and uncertainty. In: Halstead P, O´Shea J (eds) Bad year economics. Cultural responses to risk and uncertainty. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Hillman G (1991) Phytosociology and ancient weed floras: taking account of taphonomy and changes in cultivation methods. In: Harris DR, Thomas KD (eds) Modelling ecological change. Perspectives from neoecology, palaeoecology and environmental archaeology. UCL, London, pp 27–40Google Scholar
  32. Jackson ST, Williams JW (2004) Modern analogs in Quaternary paleoecology: here today, gone yesterday, gone tomorrow? Annu Rev Earth Planet Sci 32:495–537CrossRefGoogle Scholar
  33. Jacomet S (1987) Prähistorische Getreidefunde. Eigenverlag, BaselGoogle Scholar
  34. Jacomet S (2006) Identification of Cereal Remains from Archaeological Sites, 2nd edn.
  35. Jiráň L, Venclová N (eds) (2013) The prehistory of Bohemia, Vol 1–7. Instutite of Archaeology of the CAS Prague, PrahaGoogle Scholar
  36. Jones R (ed) (2012) Manure matters. Historical, archaeological and ethnographic perspectives. Ashgate, Farnham Surrey, BurlingtonGoogle Scholar
  37. Jones G, Halstead P (1995) Maslins, mixtures and monocrops: on the interpretation of archaeobotanical crop samples of heterogeneous composition. J Archaeol Sci 22:103–114CrossRefGoogle Scholar
  38. Kirleis W, Klooß S, Kroll H, Műller J (2012) Crop growing and gathering in the northern German Neolithic: a review supplemented by new results. Veget Hist Archaeobot 21:221–242CrossRefGoogle Scholar
  39. Kočár P, Dreslerová D (2010) Archeobotanické nálezy pěstovaných rostlin v pravěku České republiky—Archeobotanical finds of cultivated plants in the prehistory of the Czech Republic. Památky archeologické 101:203–242Google Scholar
  40. Kohler-Schneider M, Caneppele A, Heiss AG (2015) Land use, economy and cult in late Iron Age ritual centres: an archaeobotanical study of the La Tène site at Sandberg-Roseldorf, Lower Austria. Veget Hist Archaeobot 24:517–540CrossRefGoogle Scholar
  41. Kreisz S (2009) Malting. In: Eßlingen HM (ed) Handbook of brewing: processes, technology, markets. Wiley-VCH, Weinheim, pp 147–164CrossRefGoogle Scholar
  42. Kreuz A (2004) Landwirtschaft im Umbruch? Archäobotanische Untersuchungen zu den Jahrhunderten um Christi Geburt in Hessen und Mainfranken. Ber RGK 85:97–292Google Scholar
  43. Laghetti G, Fiorentino G, Hammer K et al (2009) On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Resour Crop Evol 56:1,163–1,170CrossRefGoogle Scholar
  44. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  45. Mariotti Lippi M, Bellini C, Mori Secci M (2010) Palaeovegetational reconstruction based on pollen and seeds/fruits from a Bronze Age archaeological site in Tuscany (Italy). Plant Biosyst 144:902–908CrossRefGoogle Scholar
  46. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load index. J Veg Sci 13:603–606CrossRefGoogle Scholar
  47. Němeček J, Mašát K, Džatko M (1985) Systém bodového hodnocení produkčního potenciálu BPEJ (System of point valuation of productivity of BPEJ). Research Institute for Soil and Water Conservation e VÚMOP, PrahaGoogle Scholar
  48. Pearsall SDM (1989) Palaeoethnobotany. A handbook of procedures. Academic Press, San DiegoGoogle Scholar
  49. Petersson M (2006) Djurhållning och betesdrift. djur, människor och landskap ivästra Östergötland under yngre bronsålder och äldre järnålder [Animal Husbandry and Organised Grazing. Animals, People and Landscape in Western Östergötland during the Late Bronze Age and Early Iron Age). Riksantikvarieämbetet, LinköpingGoogle Scholar
  50. Pliny the Elder: The Natural History (translation Bostock J, Riley HT). Taylor and Francis (1855) Book 18, Chap. 40.
  51. Procopiou H (2014) Barley meal processing in the Aegean World: a look at diversity. In: Van Gijn A, Whittaker JC, Anderson PC (eds) Exploring and explaining diversity in agricultural technology. Oxbow Press, Oxford, pp 243–246Google Scholar
  52. Rösch M (1998) The history of crops and crop weeds in south-western Germany from the Neolithic period to modern times, as shown by archaeobotanical evidence. Veget Hist Archaeobot 7:109–125CrossRefGoogle Scholar
  53. Rösch M (2013) Land use and food production in central Europe from the Neolithic to the medieval period: change of landscape, soils and agricultural systems according to archaeobotanical data. In: Kerig T, Zimmermann A (eds) Economic archaeology: from structure to performance in European archaeology. Habelt, Bonn, pp 109–127Google Scholar
  54. Sadori L, Mercuri AM, Mariotti M (2010) Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosyst 144:940–951CrossRefGoogle Scholar
  55. Salač V (2013) Bohemia as a model territory for research on transport and trade in prehistory. In: Kerig T, Zimmermann A (eds) Economic archaeology. From structure to performance in European archaeology. Universitätsforsch prähist Archäol 237. Habelt, Bonn, pp 265–284Google Scholar
  56. Šálková T (2010) Analýza rostlinných makrozbytků z objektů sídliště mladší doby bronzové v Březnici. In: Furmánek V, Miroššayová E (eds) Popolnicové polia a doba halštatská. Archeologický ústav SAV, Nitra, pp 308–316Google Scholar
  57. Schibler J, Hüster-Plogmann, H, Jacomet S, Brombacher C, Gross-Klee E, Rast-Eicher A (1997) Ökonomie und Ökologie neolithischer und bronzezeitlicher Ufersiedlungen am Zürichsee. Monogr Kantonsarchäol Zürich 20. Fotorotar, Zürich und EggGoogle Scholar
  58. Sigaut F (2014) Crops and agricultural developments in Western Europe. In: Chevalier A, Marinova E, Peña-Chocarro L (eds) Plants and people: choices and diversity through time. Oxbow Books, Oxford, pp 107–112Google Scholar
  59. Špaldon E, Andraščík M, Bechyně M et al (1982) Rostlinná výroba. Státní zemědělské nakladatelství, PrahaGoogle Scholar
  60. Stika HP (1996) Traces of a possible Celtic brewery in Eberdingen-Hochdorf, Kreis Ludwigsburg, southwest Germany. Veget Hist Archaeobot 5:81–88CrossRefGoogle Scholar
  61. Tempír Z (1976) K rozšireniu pestovania pšenice dvojzrnej (Triticum dicoccon Schrank) v západnich Karpatoch. Agrikultura 14. Slovenske poľnohospodarske muzeum, Nitra, pp 21–36Google Scholar
  62. Tempír Z (2007) Feldfrüchte und Unkraut der Völkerwanderungszeit in Březno. In: Pleinerova I (ed) Březno und germanische Siedlungen der jüngeren Völkerwanderungszeit in Böhmen. Archeologický ústav AV ČR, Praha, pp 97–98Google Scholar
  63. Tolasz R, Miková T, Valeriánová A, Voženílek V (eds) (2007) Atlas podnebí Česka [Climate atlas of Czechia]. Český hydrometeorologický ústav, PrahaGoogle Scholar
  64. Van der Veen M (1992) Crop husbandry regimes. An archaeobotanical study of farming in northern England. Sheffield Archaeol Monogr 3. Collis, SheffieldGoogle Scholar
  65. Voltr V (2012) Concept of soil fertility and soil productivity evaluation of agricultural sites in the Czech Republic. Arch Agron Soil Sci 58(Suppl 1):S243–S251CrossRefGoogle Scholar
  66. Voltr V, Hruška, M, Froněk P, Hlavsa T (2014) Fertility and productivity of soils in the Czech Republic. In: Proceedings, 9th International Soil Science Congress. Side, Antalya, pp 1,018–1,025Google Scholar
  67. Wasylikowa K (1981) The role of fossil weeds for the study of former agriculture. Zeitschr Archäol 15:11–23Google Scholar
  68. Zimmermann WH (1999) Why was cattle-stalling introduced in prehistory? The significance of byre and stable and of outwintering. In: Fabech C, Ringtved J (eds) Settlement and landscape. Jutland Archaeological Society, Ǻrhus, pp 295–312Google Scholar
  69. Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Archaeology of the CASPraha 1Czech Republic
  2. 2.Department of Physical Geography and Geoecology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations