Vegetation History and Archaeobotany

, Volume 26, Issue 5, pp 455–468 | Cite as

Mid-Holocene vegetation dynamics with an early expansion of Mauritia flexuosa palm trees inferred from the Serra do Tepequém in the savannas of Roraima State in Amazonia, northwestern Brazil

  • Paula A. Rodríguez-ZorroEmail author
  • Marcondes Lima da Costa
  • Hermann Behling
Original Article


Transition zones between forest and savanna in northern South America are important areas for improving our understanding of ecosystem dynamics and climate change. The uniquely available mid-Holocene sediment deposits from the Serra do Tepequém plateau in Roraima State, northwestern Brazil, were used to analyze past forest-savanna dynamics through pollen, spores, microcharcoal and loss on ignition (LOI). In this newly studied landscape, two distinct periods of vegetation, fire and climate dynamics have been recorded. The first phase from ca. 7,570 to 6,190 cal bp, with the dominance of savanna vegetation in particular with Poaceae and Cyperaceae and some small forest patches with Moraceae/Urticaceae, Alchornea and Schefflera, indicates a relatively dry period. Based on the microcharcoal concentration and influx data, frequent regional fires occurred at that time. The second phase from ca. 6,190 to 4,900 cal bp shows a change in the vegetation composition with an increase of Ilex, Schefflera and Fabaceae. In this period forest expanded, while savanna became reduced, reflecting an increase of wetter conditions. The fire frequency was markedly lower. The first occurrence of Mauritia flexuosa palm was at ca. 7,300 cal bp and an early expansion occurred at around 6,600 cal bp. This early expansion of M. flexuosa showed a development that was in opposition to the increase of fire and savanna expansion found in other regions in northern South America. The increase of wetter conditions in Serra do Tepequém in the mid-Holocene confirms other results found in savannas of Colombia and Venezuela between 7,000 and 6,600 cal bp.


Mauritia Brazil Forest-savanna mosaics Fire Climate change Organic matter Bayesian age depth modeling Bacon 



We would like to thank Siria Biagioni for the charcoal analysis suggestions and Alejandra Leal for helping on pollen identification. Encarni Montoya and unknown reviewers are thanked for their detailed comments on an earlier version of this manuscript. Special thanks to Thomas Giesecke, Sonia Fontana, Kartika Hapsari and Claudia Kühn for their constant support and meaningful discussions during this project phase. The DAAD-COLFUTURO scholarship is thanked for funding the first author. The fieldwork was funded by the Projects 471109/2003-7 and 304333/2003-4 from the CNPq: Geoquímica de Sedimentos e Solos Atuais como Parâmetros de Avaliação da Ação do Intemperismo Tropical na Amazônia: Importância Geológico-Arqueológica e Sócio-Econômica–GEOSEDINTAMA.

Supplementary material

334_2017_605_MOESM1_ESM.pdf (143 kb)
Supplementary material 1 (PDF 142 KB)


  1. Absy ML (1979) A Palynological Study of Holocene Sediments in the Amazon Basin. PhD thesis, University of Amsterdam, The NetherlandsGoogle Scholar
  2. Almeida-Filho R, Shimabukuro YE (2002) Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens Environ 79:42–50CrossRefGoogle Scholar
  3. Ballesteros T, Montoya E, Vegas-Vilarrubia T et al. (2014) An 8700-year record of the interplay of environmental and human drivers in the development of the southern Gran Sabana landscape, SE Venezuela. Holocene 24:1,757–1,770Google Scholar
  4. Barbosa RI, Miranda IS (2004) Fitofisionomias e diversidade vegetal das Savanas se Roraima [Phytophysiognomies and plant diversity of the Roraima savanas]. In: Barbosa RI, Xaud HAM, Costa e Souza EM (eds) Savanas de Roraima: Etnoecologia, biodiversidade e potencialidades agrossilvipastoris. FEMACT, Boa Vista, pp 61–78Google Scholar
  5. Barbosa RI, Campos C, Pinto, Fearnside PM (2007) Os ‘Lavrados’ de Roraima: Biodiversidade e Conservação de Savanas Amazônicas Brasileiras. Funct Ecosyst Commun 1:29–41Google Scholar
  6. Barni PE, Pereira VB, Manzi AO et al. (2015) Deforestation and forest fires in roraima and their relationship with phytoclimatic regions in the northern Brazilian amazon. Environ Manage 55:1,124–1,138Google Scholar
  7. Behling H, Hooghiemstra H (1998) Late Quaternary paleoecology and paleoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeogr Palaeoclimatol Palaeoecol 139:251–267CrossRefGoogle Scholar
  8. Behling H, Hooghiemstra H (1999) Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua. J Paleolimnol 21:461–476CrossRefGoogle Scholar
  9. Behling H, Hooghiemstra H (2000) Holocene Amazon rainforest-savanna dynamics and climatic implications: High-resolution pollen record from Laguna Loma Linda in eastern Colombia. J Quat Sci 15:687–695CrossRefGoogle Scholar
  10. Bennett KD (1996) Determination of the number of zones in biostratigraphical sequences. New Phytol 132:155–170CrossRefGoogle Scholar
  11. Bennett KD (2009) Psimpoll 4.27: C program for plotting pollen diagrams and analyzing pollen data. Queen’s University of Belfast, Department of Archaeology and Palaeoecology. Accessed July 2015
  12. Berrio JC, Hooghiemstra H, Behling H, Botero P, van der Bog K (2002) Late-quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12:35–48Google Scholar
  13. Beserra Neta LC, Tavares SS, Costa ML (2015) Tepequém mountains: a relict landscape in the northern Amazon. In: Vieira et al (ed) Landscapes and landforms of Brazil. Springer, Dordrecht, pp 265–272Google Scholar
  14. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474Google Scholar
  15. Brasil (1975) Geología, gemorfologia, vegetaÒ«ão e uso potencial da terra. Departamento Nacional da ProduÒ«ão Mineral. Projeto RADAMBRASIL. Folha NA.20 Boa Vista e parte das folhas NA.21 Tumucumaque, NB.20 Roraima e NB.21Google Scholar
  16. Bustamante MG, Cruz FW, Vuille M et al. (2016) Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quat Sci Rev 146:274–287CrossRefGoogle Scholar
  17. Carreira LMM, Silva MF, Lopes JRC, Nascimento LAS (1996) Catálogo de pólen das leguminosas da Amazônia Brasileira. Museu paraense Emílio Goeldi, BelémGoogle Scholar
  18. Cheng H, Sinha A, Cruz FW et al (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4(1):411Google Scholar
  19. Cordeiro RC, Turcq B, Moreira LS et al (2014) Palaeofires in Amazon: interplay between land use change and palaeoclimatic events. Palaeogeogr Palaeoclimatol Palaeoecol 15:137–151CrossRefGoogle Scholar
  20. Desjardins T (1996) Changes of the forest-savanna boundary in Brazilian Amazonia during. Holocene 108:749–756Google Scholar
  21. Dietre B, Walser C, Kofler W et al (2016) Neolithic to Bronze Age (4,850–3,450 cal bp) fire management of the Alpine Lower Engadine landscape (Switzerland) to establish pastures and cereal fields. Holocene 26:1–16Google Scholar
  22. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of Pollen Analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  23. Flantua SGA, Hooghiemstra H, Grimm EC et al (2015) Updated site compilation of the Latin American Pollen Database. Rev Palaeobot Palynol 223:104–115CrossRefGoogle Scholar
  24. Galeano A, Urrego LE, Sánchez M, Peñuela MC (2015) Environmental drivers for regeneration of Mauritia flexuosa L.f. in Colombian Amazonian swamp forest. Aquat Bot 123:47–53CrossRefGoogle Scholar
  25. Haug GH, Hughen KA, Sigman DM et al. (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308Google Scholar
  26. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  27. Herzschuh U, Birks JB, Laepple T et al. (2016) Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature. doi: 10.1038/ncomms11967 Google Scholar
  28. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–473CrossRefGoogle Scholar
  29. Hooghiemstra H, Berrio JC (2007) South America: Pollen record from the Colombian savannas. In: Elias S (ed) Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp 2,654–2,659Google Scholar
  30. INMET (2015) Instituto Nacional de Metereologia, Monitoramento das Estações Convencionais Ministério da Agricultura, Pecuária e Abastecimento. Accessed July 2015
  31. Lasso CA, Rial A, Matallana C et al (eds) (2011) Biodiversidad de la cuenca del Orinoco. II Áreas prioritarias para la conservación y uso sostenible. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Ministerio del Ambiente, Vivienda y Desarrollo Territorial, WWF Colombia, Fundación Omacha, Fundación La Salle de Ciencias Naturales e Instituto de Estudios de la Orinoquia (Universidad Nacional de Colombia). Bogotá, D.C., ColombiaGoogle Scholar
  32. Lasso CA, Rial A, González-BV (eds) (2013) Morichalesy canangunchales de la Orinoquia y Amazonia: Colombia - Venezuela. Parte I. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá, D. C., ColombiaGoogle Scholar
  33. Leal A, Bilbao B, Berrío J et al (2011) A pollen atlas of premontane woody and herbaceous communities from the upland savannas of Guayana, Venezuela. Palynology 35:226–266CrossRefGoogle Scholar
  34. Leal A, Bilbao B, Berrío JC (2013) A contribution to pollen rain characterization in forest-savanna mosaics of the venezuelan Guayana and its use in vegetation reconstructions from sedimentary records. Am J Plant Sci 4:33–52CrossRefGoogle Scholar
  35. López-Martínez C, Lara A, Rull V et al. (2010) Additions to the Pantepui pollen flora (Venezuelan Guayana): the Maguire Collection. Collectanea Botanica 29:31–49CrossRefGoogle Scholar
  36. Luzardo R (2006) O metamorfismo da serra Tepequém (estado de Roraima). Masters thesis, Universidade Federal do AmazonasGoogle Scholar
  37. Marchant R, Almeida L, Behling H et al. (2002) Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Rev Palaeobot Palynol 121:1–75CrossRefGoogle Scholar
  38. Matthias I, Semmler MSS, Giesecke T (2015) Pollen diversity captures landscape structure and diversity. J Ecol 103:880–890CrossRefGoogle Scholar
  39. Meneses MENS, Costa ML, Behling H et al (2013) Late Holocene vegetation and fire dynamics from a savanna-forest ecotone in Roraima state, northern Brazilian Amazon. J S AM. Earth Sci 42:17–26Google Scholar
  40. Miranda IS, Absy ML (2000) Fisionomia Das Savanas De Roraima, Brasil 1. Acta Amazonica 30:423–440CrossRefGoogle Scholar
  41. Miranda IS, Absy ML, Rebelo GH (2002) Community Structure of Woody Plants of Roraima Savannah, Brazil. Plant Ecol 164:109–123CrossRefGoogle Scholar
  42. Montoya E, Rull V (2011) Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat Sci Rev 30:3,430–3,444Google Scholar
  43. Montoya E, Rull V, Nogué S (2011a) Early human occupation and land use changes near the boundary of the Orinoco and the Amazon basins (SE Venezuela): Palynological evidence from El Paují record. Palaeogeogr Palaeoclimatol Palaeoecol 310:413–426CrossRefGoogle Scholar
  44. Montoya E, Rull V, Stansell ND et al. (2011b) Forest-savanna-morichal dynamics in relation to fire and human occupation in the southern Gran Sabana (SE Venezuela) during the last millennia. Quat Res 76:335–344CrossRefGoogle Scholar
  45. Montoya E, Rull V, Vegas-Vilarrúbia T (2012) Non-pollen palynomorph studies in the neotropics: the case of Venezuela. Rev Palaeobot Palynol 186:102–130CrossRefGoogle Scholar
  46. Nascimento FA, Tavares-Junior SS, Beserra-Neta LC (2012) Estudo dos compartimentos geomorfológicos na serra do tepequém – RR, através de fotointerpretação em imagens de sensores remotos e produtos integrados via ihs. Revista Geonorte 2:1,464–1,474Google Scholar
  47. Oksanen J, Blanchet FG, Kindt R et al. (2015) Vegan: Community Ecology Package. R package version 2.3–0. Accessed August 2015
  48. R Development Core Team (2015) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Last accessed August 2015
  49. Rangel-Ch JO, Bogotá RG, Jiménez-Bulla LC (2001) Atlas palinológico de la Amazonia Colombiana. IV. Familia Arecaceae. Caldasia 23:281–300Google Scholar
  50. REFLORA (2015) List of species of the Brazilian Flora. Rio de Janeiro Botanical Garden. Accessed November 2015
  51. Reimer PJ, Bard E, Bayliss A et al. (2013) IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887Google Scholar
  52. Reis NJ, Schobbenhaus C, Costa F et al. (2008) Pedra Pintada, RR - Ícone do Lago Parime. In: Winge M, Schobbenhaus C, Souza CRG, et al (eds) Sítios Geológicos e Paleontológicos do Brasil Ícone do Lago Parime Ícone do Lago Parime. Accessed January 2016
  53. Roosevelt AC, Lima da Costa M, Lopes Machado C et al (1996) Paleoindian Cave Dwellers in the Amazon: The Peopling of the Americas. Science 272:373–384CrossRefGoogle Scholar
  54. Roubik DW, Moreno E (1991) Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany 36. Missouri Botanical Garden, St. LouisGoogle Scholar
  55. Rull V (1999) A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J Quat Sci 14:137–152CrossRefGoogle Scholar
  56. Rull V (2003) An illustrated key for the identification of pollen from pantepui and the gran sabana (eastern Venezuelan Guayana). Palynology 27:99–133CrossRefGoogle Scholar
  57. Rull V, Montoya E (2014) Mauritia flexuosa palm swamp communities: Natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a neotropical context. Quat Sci Rev 99:17–33CrossRefGoogle Scholar
  58. Rull V, Montoya E, Nogué S et al. (2013) Ecological palaeoecology in the neotropical Gran Sabana region: Long-term records of vegetation dynamics as a basis for ecological hypothesis testing. Perspect Plant Ecol Evol System 15:338–359CrossRefGoogle Scholar
  59. Rull V, Montoya E, Vegas-Vilarrúbia T et al. (2015) New insights on palaeofires and savannisation in northern South America. Quat Sci Rev 122:158–165CrossRefGoogle Scholar
  60. Simões Filho FL, Turcq BJ, Sifeddine A (2010) Mudanças paleoambientais do contato floresta-savana de Roraima durante o Holoceno. In: Barbosa RI, Ferreira-Melo V (eds) Roraima: Homem, Ambiente e Ecologia. FEMACT, Boa Vista, pp 257–282Google Scholar
  61. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  62. Toledo M, Bush MB (2009) History of Amazonian savannas in the last 10,000 years. Palaeoecological records of environmental human occupation. VDM Verlag Müller, SaarbrückenGoogle Scholar
  63. USGS (2014) Earth explorer from the U.S. Geological Survey. Accessed October 2014
  64. Van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  65. Velez MI, Wille M, Hooghiemstra H et al. (2005) Integrated diatom-pollen based Holocene environmental reconstruction of lake Las Margaritas, eastern savannas of Colombia. Holocene 8:1,184–1,198Google Scholar
  66. Wohlfarth B, Skog G, Possnert G et al (1998) Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. J Quat Sci 13:137–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Paula A. Rodríguez-Zorro
    • 1
    Email author
  • Marcondes Lima da Costa
    • 2
  • Hermann Behling
    • 1
  1. 1.Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant SciencesGeorg-August-University of GöttingenGöttingenGermany
  2. 2.Instituto de GeocienciasUniversidade Federal do Pará (UFPA)BelémBrazil

Personalised recommendations