Skip to main content
Log in

Potential of combining morphometry and ancient DNA information to investigate grapevine domestication

Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The goal of this work was to explore the possibility (1) of carrying out both morphogeometric and archaeological DNA analyses on the same grape pips and (2) of comparing different molecular markers to reveal DNA variation, namely Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs). We focused on waterlogged seeds originating from three Roman and one medieval archaeological sites in France. Our first results indicate that taking photographs of pips is not detrimental to the preservation of DNA, provided a specific protocol is respected. Regarding the genetic markers, obtaining reliable information in sufficient quantity proved very difficult using SSRs. SNPs have a much more interesting potential, providing greater success rates and reliability. Here in four archaeological pips we studied 842 SNPs, derived from known polymorphisms in several genes, including one gene related to sex. Phylogenies built using these genetic markers indicate that three pips from the Roman site of Gasquinoy are close to modern wild grapevines and/or the female group, while the only medieval pip from Colletière is hermaphrodite and close to the modern cultivated group. Morphogeometrical results are in agreement with these findings. We conclude that the combined use of SNP markers and morphogeometry is promising for deciphering the intricate history of grapevine domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714

    Article  Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L et al (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. doi:10.1186/1471-2229-13-25

    Google Scholar 

  • Barnard H, Dooley AN, Areshian G, Gasparyan G, Faull KF (2011) Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern Highlands. J Archaeol Sci 38:977–984

    Article  Google Scholar 

  • Billiard R (1913) La vigne dans l’Antiquité. H. Lardanchet, Lyon

    Google Scholar 

  • Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999

    Article  Google Scholar 

  • Bonhomme V, Picq S, Gaucherel C, Claude J (2014) Momocs: outline analysis using R. J Stat Softw 56:13

    Article  Google Scholar 

  • Bouby L, Terral JF, Ivorra S, Marinval P, Pradat B, Ruas M-P (2006) Vers une approche bio-archéologique de l’histoire de la vigne cultivée et de la viticulture: problématique, choix méthodologiques et premiers résultats. Archéologie du Midi Médiéval 23(24):61–74

    Google Scholar 

  • Bouby L, Figueiral I, Bouchette A et al (2013) Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman time in Southern France. PLoS ONE 8:e63195. doi:10.1371/journal.pone.0063195

    Article  Google Scholar 

  • Bouby L, Marinval P, Terral JF (2014) From secondary to speculative production? The protohistorical history of viticulture in Southern France. In: Chevalier A, Marinova E, Peña-Chocarro L (eds) Plants and people: choices and diversity through time. Oxbow Books, London, pp 175–181

    Google Scholar 

  • Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633

    Article  Google Scholar 

  • Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veget Hist Archaeobot 24:207–214

    Article  Google Scholar 

  • Brun JP (2003) Le vin et l’huile dans la Méditerranée antique. Editions Errance, Paris

    Google Scholar 

  • Brun JP (2005) Archéologie du vin et de l’huile en Gaule romaine. Editions Errance, Paris

    Google Scholar 

  • Brun JP (2011) Viticulture et oléiculture en Gaule. In: Ouzoulias P, Tranoy L (eds) Comment les Gaules devinrent romaines. La Découverte, Paris, pp 231–253

    Google Scholar 

  • Cappellini E, Gilbert MP, Geuna F et al (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205–217

    Article  Google Scholar 

  • Colardelle M, Verdel E (1993) Chevaliers-paysans de l’An Mil au lac de Paladru. Editions Errance, Paris

    Google Scholar 

  • Da Fonseca RR, Smith BD, Wales N et al (2014) The origin and evolution of maize in the Southwestern United States. Nat Plants. doi:10.1038/NPLANTS.2014.3

    Google Scholar 

  • De Andrés MT, Benito A, Pérez-Rivera G et al (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816

    Article  Google Scholar 

  • Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Péros JP, Ruiz M, This P (2011) SNIPlAY: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinform 12:1

    Article  Google Scholar 

  • Dumont A (2009) Voie et puits couvert à Heraclea Caccabaria (milieu du Ier-VIe siècle): Var, Cavalaire-sur-Mer, Avenue Pierre-et-Marie-Curie: rapport de fouilles. Scientific Report, Inrap, Nîmes

    Google Scholar 

  • Elsner J, Schibler J, Hofreiter M, Schlumbaum A (2015) Burial condition is the most important factor for mtDNA PCR amplification success in Palaeolithic equid remains from the Alpine foreland. Archaeol Anthropol Sci 7:505–515

    Article  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1–17

    Article  Google Scholar 

  • Figueiral I, Bouby L, Buffat L, Petitot H, Terral J-F (2010) Archaeobotany, vine growing and wine producing in Roman Southern France: the site of Gasquinoy (Béziers, Hérault). J Archaeol Sci 37:139–149

    Article  Google Scholar 

  • Flotté P (ed) (2012) Horbourg-Whir, Haut-Rhin, Kreusfeld (Est). Un quartier de l’agglomération Gallo-Romaine. Scientific report. Pôle d’Archéologie Interdépartemental Rhénan (PAIR), Sélestat

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  Google Scholar 

  • Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  Google Scholar 

  • Houel C, Bounon R, Chaib J et al (2010) Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biol 10:284

    Article  Google Scholar 

  • Lachiver M (1988) Vins, vignes et vignerons. Histoire du vignoble français, Fayard, Paris

    Google Scholar 

  • Laucou V, Lacombe T, Dechesne F et al (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    Article  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31

    Article  Google Scholar 

  • Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30:721–729

    Article  Google Scholar 

  • Marriage TN, Hudman S, Mort E, Orive ME, Shaw RG, Kelly JK (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103:310–317. doi:10.1038/hdy.2009.67

    Article  Google Scholar 

  • Maul E, Sudharma K, Kecke S et al (2012) The European Vitis Database (www.eu-vitis.de): a technical innovation through an online uploading and interactive modification system. Vitis 51:79–85

    Google Scholar 

  • McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, Princeton

    Google Scholar 

  • McGovern PE, Glusker DL, Exner LJ, Voigt MM (1996) Neolithic resinated wine. Nature 381:480–481

    Article  Google Scholar 

  • Milanesi C, Bigliazzi I, Faleri C, Caterina B, Cresti M (2011) Microscope observations and DNA analysis of wine residues from Roman amphorae found in Ukraine and from bottles of recent Tuscan wines. J Archaeol Sci 38:3675–3680

    Article  Google Scholar 

  • Myles S, Boyko AR, Owens CL et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535

    Article  Google Scholar 

  • Negrul AM (1946) Origin and classification of cultured grape. In: Baranov A, Kai YF, Lazarevski MA, Palibin TV, Prosmoserdov NN (eds) The ampelography of the USSR. Pischepromizdat, Moscow, pp 159–216

    Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  Google Scholar 

  • Pagnoux C, Bouby L, Ivorra S, Petit C, Valamoti SM, Pastor T, Picq S, Terral JF (2015) Inferring the agrobiodiversity of Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Veget Hist Archaeobot 24:75–84

    Article  Google Scholar 

  • Park SDE, Magee DA, McGettigan PA et al (2015) Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol 16:234. doi:10.1186/s13059-015-0790-2

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARWIN software. http://darwin.cirad.fr/

  • Philippe R, Courtois B, McNally KL et al (2010) Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theor Appl Genet 121:769–787

    Article  Google Scholar 

  • Picq S, Santoni S, Lacombe T et al (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229

    Article  Google Scholar 

  • Pruvost M, Schwartz R, Correira VB, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl EM (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci USA 104:739–744

    Article  Google Scholar 

  • Py M, Buxo i Capdevila R (2001) La viticulture en Gaule à l’Âge du Fer. Gallia 58:29–43

    Article  Google Scholar 

  • Roques S, Duchesne P, Bernatchez L (1999) Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study. Mol Ecol 8:1703–1717

    Article  Google Scholar 

  • Roratto PA, Buchmann D, Santos S, Bartholomei-Santos ML (2008) PCR-mediated recombination in development of microsatellite markers: mechanism and implications. Genet Mol Biol 31:58–63

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (1996–1998) Primer3. http://batchprimer3.bioinformatics.ucdavis.edu/disclaimer.html

  • Sawyer S, Krause J, Guschanski K, Savolainen V, Paabo S (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7:e34131. doi:10.1371/journal.pone.0034131

    Article  Google Scholar 

  • Schlumbaum A, Tensen M, Jaenicke-Despre V (2008) Ancient plant DNA in archaeobotany. Veget Hist Archaeobot 17:233–244. doi:10.1007/s00334-007-0125-7

    Article  Google Scholar 

  • Schubert M, Jónsson H, Chang D et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci USA 111:e5661–e5669

    Article  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    Article  Google Scholar 

  • Staden Manual (2004) Medical Research Council, Laboratory of Molecular Biology. http://computing.bio.cam.ac.uk/local/staden/manual/master_brief.html

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  Google Scholar 

  • Tchernia A (1986) Le vin de l’Italie romaine. Ecole française de Rome, Rome

    Google Scholar 

  • Terral JF, Tabard E, Bouby L et al (2010) Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot 105:443–455

    Article  Google Scholar 

  • This P, Jung A, Boccacci P et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458

    Article  Google Scholar 

  • Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949

    Article  Google Scholar 

  • Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G (2015) Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Veget Hist Archaeobot 24:587–600

    Article  Google Scholar 

  • Valamoti SM, Mangafa M, Koukouli-Chrysanthaki C, Malamidou D (2007) Grape-pressings from northern Greece: the earliest wine in the Aegean? Antiquity 81:54–61

    Article  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World, 4th edn. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Sandrine Subitani and Thierry Pastor for their technical support during the processing of the seed samples, and the directors of the archaeological excavations. Financial support has been provided by the programs FRUCTIMEDHIS (Agence Nationale de la Recherche, France; A. Durand, dir.) and VitiPaleoGen (Appel à Projets en Génomique Environnementale, Centre National Recherche Scientifique-Institut Ecologie et Environnement; J.-F. Terral, dir.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bacilieri.

Additional information

Communicated by F. Bittmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacilieri, R., Bouby, L., Figueiral, I. et al. Potential of combining morphometry and ancient DNA information to investigate grapevine domestication. Veget Hist Archaeobot 26, 345–356 (2017). https://doi.org/10.1007/s00334-016-0597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-016-0597-4

Keywords

Navigation