Vegetation History and Archaeobotany

, Volume 26, Issue 3, pp 345–356 | Cite as

Potential of combining morphometry and ancient DNA information to investigate grapevine domestication

  • Roberto Bacilieri
  • Laurent Bouby
  • Isabel Figueiral
  • Caroline Schaal
  • Jean-Frédéric Terral
  • Catherine Breton
  • Sandrine Picq
  • Audrey Weber
  • Angela Schlumbaum
Original Article


The goal of this work was to explore the possibility (1) of carrying out both morphogeometric and archaeological DNA analyses on the same grape pips and (2) of comparing different molecular markers to reveal DNA variation, namely Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs). We focused on waterlogged seeds originating from three Roman and one medieval archaeological sites in France. Our first results indicate that taking photographs of pips is not detrimental to the preservation of DNA, provided a specific protocol is respected. Regarding the genetic markers, obtaining reliable information in sufficient quantity proved very difficult using SSRs. SNPs have a much more interesting potential, providing greater success rates and reliability. Here in four archaeological pips we studied 842 SNPs, derived from known polymorphisms in several genes, including one gene related to sex. Phylogenies built using these genetic markers indicate that three pips from the Roman site of Gasquinoy are close to modern wild grapevines and/or the female group, while the only medieval pip from Colletière is hermaphrodite and close to the modern cultivated group. Morphogeometrical results are in agreement with these findings. We conclude that the combined use of SNP markers and morphogeometry is promising for deciphering the intricate history of grapevine domestication.


Single nucleotide polymorphism Microsatellite Vitis Gaul Roman period 



The authors thank Sandrine Subitani and Thierry Pastor for their technical support during the processing of the seed samples, and the directors of the archaeological excavations. Financial support has been provided by the programs FRUCTIMEDHIS (Agence Nationale de la Recherche, France; A. Durand, dir.) and VitiPaleoGen (Appel à Projets en Génomique Environnementale, Centre National Recherche Scientifique-Institut Ecologie et Environnement; J.-F. Terral, dir.).

Supplementary material

334_2016_597_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)
334_2016_597_MOESM2_ESM.docx (378 kb)
Supplementary material 2 (DOCX 377 kb)
334_2016_597_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 kb)
334_2016_597_MOESM4_ESM.docx (283 kb)
Supplementary material 4 (DOCX 282 kb)
334_2016_597_MOESM5_ESM.xlsx (44 kb)
Supplementary material 5 (XLSX 44 kb)


  1. Arroyo-Garcia R, Ruiz-Garcia L, Bolling L et al (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714CrossRefGoogle Scholar
  2. Bacilieri R, Lacombe T, Le Cunff L et al (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. doi: 10.1186/1471-2229-13-25 Google Scholar
  3. Barnard H, Dooley AN, Areshian G, Gasparyan G, Faull KF (2011) Chemical evidence for wine production around 4000 BCE in the Late Chalcolithic Near Eastern Highlands. J Archaeol Sci 38:977–984CrossRefGoogle Scholar
  4. Billiard R (1913) La vigne dans l’Antiquité. H. Lardanchet, LyonGoogle Scholar
  5. Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999CrossRefGoogle Scholar
  6. Bonhomme V, Picq S, Gaucherel C, Claude J (2014) Momocs: outline analysis using R. J Stat Softw 56:13CrossRefGoogle Scholar
  7. Bouby L, Terral JF, Ivorra S, Marinval P, Pradat B, Ruas M-P (2006) Vers une approche bio-archéologique de l’histoire de la vigne cultivée et de la viticulture: problématique, choix méthodologiques et premiers résultats. Archéologie du Midi Médiéval 23(24):61–74Google Scholar
  8. Bouby L, Figueiral I, Bouchette A et al (2013) Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman time in Southern France. PLoS ONE 8:e63195. doi: 10.1371/journal.pone.0063195 CrossRefGoogle Scholar
  9. Bouby L, Marinval P, Terral JF (2014) From secondary to speculative production? The protohistorical history of viticulture in Southern France. In: Chevalier A, Marinova E, Peña-Chocarro L (eds) Plants and people: choices and diversity through time. Oxbow Books, London, pp 175–181Google Scholar
  10. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633CrossRefGoogle Scholar
  11. Brown TA, Cappellini E, Kistler L, Lister DL, Oliveira HR, Wales N, Schlumbaum A (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veget Hist Archaeobot 24:207–214CrossRefGoogle Scholar
  12. Brun JP (2003) Le vin et l’huile dans la Méditerranée antique. Editions Errance, ParisGoogle Scholar
  13. Brun JP (2005) Archéologie du vin et de l’huile en Gaule romaine. Editions Errance, ParisGoogle Scholar
  14. Brun JP (2011) Viticulture et oléiculture en Gaule. In: Ouzoulias P, Tranoy L (eds) Comment les Gaules devinrent romaines. La Découverte, Paris, pp 231–253Google Scholar
  15. Cappellini E, Gilbert MP, Geuna F et al (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205–217CrossRefGoogle Scholar
  16. Colardelle M, Verdel E (1993) Chevaliers-paysans de l’An Mil au lac de Paladru. Editions Errance, ParisGoogle Scholar
  17. Da Fonseca RR, Smith BD, Wales N et al (2014) The origin and evolution of maize in the Southwestern United States. Nat Plants. doi: 10.1038/NPLANTS.2014.3 Google Scholar
  18. De Andrés MT, Benito A, Pérez-Rivera G et al (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816CrossRefGoogle Scholar
  19. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, Péros JP, Ruiz M, This P (2011) SNIPlAY: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects. BMC Bioinform 12:1CrossRefGoogle Scholar
  20. Dumont A (2009) Voie et puits couvert à Heraclea Caccabaria (milieu du Ier-VIe siècle): Var, Cavalaire-sur-Mer, Avenue Pierre-et-Marie-Curie: rapport de fouilles. Scientific Report, Inrap, NîmesGoogle Scholar
  21. Elsner J, Schibler J, Hofreiter M, Schlumbaum A (2015) Burial condition is the most important factor for mtDNA PCR amplification success in Palaeolithic equid remains from the Alpine foreland. Archaeol Anthropol Sci 7:505–515CrossRefGoogle Scholar
  22. Emanuelli F, Lorenzi S, Grzeskowiak L et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1–17CrossRefGoogle Scholar
  23. Figueiral I, Bouby L, Buffat L, Petitot H, Terral J-F (2010) Archaeobotany, vine growing and wine producing in Roman Southern France: the site of Gasquinoy (Béziers, Hérault). J Archaeol Sci 37:139–149CrossRefGoogle Scholar
  24. Flotté P (ed) (2012) Horbourg-Whir, Haut-Rhin, Kreusfeld (Est). Un quartier de l’agglomération Gallo-Romaine. Scientific report. Pôle d’Archéologie Interdépartemental Rhénan (PAIR), SélestatGoogle Scholar
  25. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94CrossRefGoogle Scholar
  26. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefGoogle Scholar
  27. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  28. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359CrossRefGoogle Scholar
  29. Houel C, Bounon R, Chaib J et al (2010) Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions. BMC Plant Biol 10:284CrossRefGoogle Scholar
  30. Lachiver M (1988) Vins, vignes et vignerons. Histoire du vignoble français, Fayard, ParisGoogle Scholar
  31. Laucou V, Lacombe T, Dechesne F et al (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245CrossRefGoogle Scholar
  32. Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31CrossRefGoogle Scholar
  33. Manen JF, Bouby L, Dalnoki O, Marinval P, Turgay M, Schlumbaum A (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30:721–729CrossRefGoogle Scholar
  34. Marriage TN, Hudman S, Mort E, Orive ME, Shaw RG, Kelly JK (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103:310–317. doi: 10.1038/hdy.2009.67 CrossRefGoogle Scholar
  35. Maul E, Sudharma K, Kecke S et al (2012) The European Vitis Database ( a technical innovation through an online uploading and interactive modification system. Vitis 51:79–85Google Scholar
  36. McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, PrincetonGoogle Scholar
  37. McGovern PE, Glusker DL, Exner LJ, Voigt MM (1996) Neolithic resinated wine. Nature 381:480–481CrossRefGoogle Scholar
  38. Milanesi C, Bigliazzi I, Faleri C, Caterina B, Cresti M (2011) Microscope observations and DNA analysis of wine residues from Roman amphorae found in Ukraine and from bottles of recent Tuscan wines. J Archaeol Sci 38:3675–3680CrossRefGoogle Scholar
  39. Myles S, Boyko AR, Owens CL et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535CrossRefGoogle Scholar
  40. Negrul AM (1946) Origin and classification of cultured grape. In: Baranov A, Kai YF, Lazarevski MA, Palibin TV, Prosmoserdov NN (eds) The ampelography of the USSR. Pischepromizdat, Moscow, pp 159–216Google Scholar
  41. Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94CrossRefGoogle Scholar
  42. Pagnoux C, Bouby L, Ivorra S, Petit C, Valamoti SM, Pastor T, Picq S, Terral JF (2015) Inferring the agrobiodiversity of Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Veget Hist Archaeobot 24:75–84CrossRefGoogle Scholar
  43. Park SDE, Magee DA, McGettigan PA et al (2015) Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol 16:234. doi: 10.1186/s13059-015-0790-2 CrossRefGoogle Scholar
  44. Perrier X, Jacquemoud-Collet JP (2006) DARWIN software.
  45. Philippe R, Courtois B, McNally KL et al (2010) Structure, allelic diversity and selection of Asr genes, candidate for drought tolerance, in Oryza sativa L. and wild relatives. Theor Appl Genet 121:769–787CrossRefGoogle Scholar
  46. Picq S, Santoni S, Lacombe T et al (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229CrossRefGoogle Scholar
  47. Pruvost M, Schwartz R, Correira VB, Champlot S, Braguier S, Morel N, Fernandez-Jalvo Y, Grange T, Geigl EM (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci USA 104:739–744CrossRefGoogle Scholar
  48. Py M, Buxo i Capdevila R (2001) La viticulture en Gaule à l’Âge du Fer. Gallia 58:29–43CrossRefGoogle Scholar
  49. Roques S, Duchesne P, Bernatchez L (1999) Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study. Mol Ecol 8:1703–1717CrossRefGoogle Scholar
  50. Roratto PA, Buchmann D, Santos S, Bartholomei-Santos ML (2008) PCR-mediated recombination in development of microsatellite markers: mechanism and implications. Genet Mol Biol 31:58–63CrossRefGoogle Scholar
  51. Rozen S, Skaletsky HJ (1996–1998) Primer3.
  52. Sawyer S, Krause J, Guschanski K, Savolainen V, Paabo S (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7:e34131. doi: 10.1371/journal.pone.0034131 CrossRefGoogle Scholar
  53. Schlumbaum A, Tensen M, Jaenicke-Despre V (2008) Ancient plant DNA in archaeobotany. Veget Hist Archaeobot 17:233–244. doi: 10.1007/s00334-007-0125-7 CrossRefGoogle Scholar
  54. Schubert M, Jónsson H, Chang D et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci USA 111:e5661–e5669CrossRefGoogle Scholar
  55. Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373CrossRefGoogle Scholar
  56. Staden Manual (2004) Medical Research Council, Laboratory of Molecular Biology.
  57. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462CrossRefGoogle Scholar
  58. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefGoogle Scholar
  59. Tchernia A (1986) Le vin de l’Italie romaine. Ecole française de Rome, RomeGoogle Scholar
  60. Terral JF, Tabard E, Bouby L et al (2010) Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot 105:443–455CrossRefGoogle Scholar
  61. This P, Jung A, Boccacci P et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458CrossRefGoogle Scholar
  62. Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949CrossRefGoogle Scholar
  63. Ucchesu M, Orrù M, Grillo O, Venora G, Usai A, Serreli PF, Bacchetta G (2015) Earliest evidence of a primitive cultivar of Vitis vinifera L. during the Bronze Age in Sardinia (Italy). Veget Hist Archaeobot 24:587–600CrossRefGoogle Scholar
  64. Valamoti SM, Mangafa M, Koukouli-Chrysanthaki C, Malamidou D (2007) Grape-pressings from northern Greece: the earliest wine in the Aegean? Antiquity 81:54–61CrossRefGoogle Scholar
  65. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World, 4th edn. Oxford University Press, OxfordCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Roberto Bacilieri
    • 1
  • Laurent Bouby
    • 2
  • Isabel Figueiral
    • 2
    • 3
  • Caroline Schaal
    • 4
  • Jean-Frédéric Terral
    • 2
  • Catherine Breton
    • 2
  • Sandrine Picq
    • 5
  • Audrey Weber
    • 1
  • Angela Schlumbaum
    • 6
  1. 1.AGAP UMR1334 (INRA-CIRAD-SupAgro) Amélioration Génétique et Adaptation des Plantes tropicales et méditerranéennes - équipe DAAVMontpellier CedexFrance
  2. 2.ISEM - UMR 5554Université MontpellierMontpellier CedexFrance
  3. 3.Inrap Méditerranée. 3 rue de l’AcropoleVilleneuve-les-BéziersFrance
  4. 4.GéoArchEon SARL, Chrono-Environnement - UMR 6249. La Bouloie, UFR Sciences et TechniquesBesançonFrance
  5. 5.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CentreSainte-FoyCanada
  6. 6.Department Environmental Science, Integrative Prehistory and Archaeological ScienceUniversity of BaselBaselSwitzerland

Personalised recommendations