Vegetation History and Archaeobotany

, Volume 26, Issue 2, pp 167–182 | Cite as

Unraveling the naturalness of sweet chestnut forests (Castanea sativa Mill.) in central Spain

  • José Antonio López-SáezEmail author
  • Arthur Glais
  • Sandra Robles-López
  • Francisca Alba-Sánchez
  • Sebastián Pérez-Díaz
  • Daniel Abel-Schaad
  • Reyes Luelmo-Lautenschlaeger
Original Article


This paper describes the patterns and processes of vegetation change and fire history in the Late Holocene (c. 3,140 cal bp) palaeoecological sequence of El Tiemblo, in a mountainous area in central Spain (Gredos range, Spanish Central System), and provides the first Iberian pollen sequence undertaken within a Castanea sativa-dominated woodland. These new data reassess not only the autochthonous nature of the species in the region and in the Iberian Peninsula, but also the naturalness of well-developed sweet chestnut forests. The study focuses on anthropogenic dynamics linked both to the effects of livestock husbandry and the use of fire for forest clearance. With this aim, non-pollen palynomorphs (coprophilous fungi ascospores) and charcoal accumulation rate are useful indicators for assessing the increasing role of human influence on vegetation.


Chestnut naturalness Fire history Pollen analysis Anthropogenic dynamics Gredos range 



We sincerely thank three anonymous reviewers and the editor for their constructive suggestions and comments. This work was funded by the project HAR2013-43701-P (Spanish Economy and Competitiveness Ministry) “Dinámicas socio-ecológicas, resiliencia y vulnerabilidad en un paisaje de montaña: el Sistema Central (9,000 cal bc-1850 cal ad) (DESIRÈ)”. J.A. López-Sáez is currently supported by a research Grant (Spanish Ministry of Education, Culture and Sport) at Caen Basse-Normandie University. We are grateful to A. López Andreu (RIP) and P. Sáez Navas for their collaboration and assistance during the field work.


  1. Aaby B, Berglund BE (1986) Characterization of the peat and lake deposits. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 231–246Google Scholar
  2. Abel-Schaad D, López-Sáez JA (2013) Vegetation changes in relation to fire history and human activities at the Peña Negra mire (Bejar Range, Iberian Central Mountain System, Spain) during the past 4000 years. Veget Hist Archaeobot 22:199–214CrossRefGoogle Scholar
  3. Abel-Schaad D, Hernández AM, López-Merino L, Pulido FJ, López-Sáez JA (2009a) Cabras y quemorros: tres siglos de cambios en el paisaje de la vertiente extremeña de la Sierra de Gredos. Rev Est Extremeños 65:449–478Google Scholar
  4. Abel-Schaad D, Hernández AM, López-Sáez JA, Pulido FJ, López-Merino L, Martínez-Cortizas A (2009b) Evolución de la vegetación en la Sierra de Gata (Cáceres-Salamanca, España) durante el Holoceno reciente. Implicaciones biogeográficas. Rev Esp Micropal 41:91–105Google Scholar
  5. Abel-Schaad D, López-Sáez JA, Pulido FJ (2014a) Heathlands, fire and grazing. A paleoenvironmental view of Las Hurdes (Cáceres, Spain) history during the last 1200 years. For Syst 23:247–258Google Scholar
  6. Abel-Schaad D, Pulido FJ, López-Sáez JA et al (2014b) Persistence of tree relicts through the Holocene in the Spanish Central System. Lazaroa 35:107–131CrossRefGoogle Scholar
  7. Aira MJ, Barthelemy L (1990) Étude de la répartition de la pluie pollinique dans la Serra do Bocelo (Galice, Espagne). CR Soc Biogéogr 63:129–146Google Scholar
  8. Álvarez-Sanchís JR (2000) The Iron Age in Western Spain (800 bcad 50): an overview. Oxford J Archaeol 19:65–89CrossRefGoogle Scholar
  9. Álvarez-Sanchís JR (2005) Oppida and Celtic society in western Spain. J Interdiscip Celtic Stud 6:255–285Google Scholar
  10. Aravanopoulos FA, Bucci G, Akkak A et al (2005) Molecular population genetics and dynamics of chestnut (Castanea sativa) in Europe: inferences for gene conservation and tree improvement. Acta Hortic 693:403–412CrossRefGoogle Scholar
  11. Atienza M, Gómez-Lobo A, Ruiz-Zapata MB (1990) Estudio polínico de un depósito localizado en la Garganta del Trampal (Sierra de Béjar, Ávila). Actas de Gredos 10:19–23Google Scholar
  12. Benito-Garzón M, Sánchez de Dios R, Sainz-Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30:120–134CrossRefGoogle Scholar
  13. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  14. Berrocal M, Gallardo JF, Cardeñoso JM (1998) El castaño. Mundi-Prensa, MadridGoogle Scholar
  15. Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  16. Blanco E, Casado M, Costa M et al (1997) Los bosques ibéricos: una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  17. Blanco-González A, López-Sáez JA, López-Merino L (2009) Ocupación y uso del territorio en el sector centromeridional de la cuenca del Duero entre la Antigüedad y la Alta Edad Media (siglos I-XI D.C.). Arch Esp Arqueol 82:275–300CrossRefGoogle Scholar
  18. Blanco-González A, López-Sáez JA, Alba F, Abel D, Pérez S (2015) Medieval landscapes in the Spanish Central System (450–1350): a palaeoenvironmental and historical perspective. J Mediev Iber Stud 7:1–17CrossRefGoogle Scholar
  19. Bounous G, Beccaro G (2002) Chestnut culture: directions for establishing new orchard. Nucis 11:30–34Google Scholar
  20. Bounous G, Marinoni DT (2005) Chestnut: botany, horticulture and utilization. Hortic Rev 31:291–347Google Scholar
  21. Carrión JS (1992) Late Quaternary pollen sequence from Carihuela Cave, southeastern Spain. Rev Palaeobot Palynol 71:37–77CrossRefGoogle Scholar
  22. Carrión JS, Navarro C, Navarro J, Munuera M (2000) The distribution of cluster pine (Pinus pinaster) in Spain as derived from palaeoecological data, relationships with physociological classification. Holocene 10:243–252CrossRefGoogle Scholar
  23. Carrión JS, Yll EI, Walker MJ, Legaz AJ, Chain C (2003) Glacial refugia of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Glob Ecol Biogeogr 12:119–129CrossRefGoogle Scholar
  24. Carrión JS, Scott L, Arribas A, Fuentes N, Gil-Romera G, Montoya E (2007) Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites. J Quat Sci 22:191–202CrossRefGoogle Scholar
  25. Carrión JS, Fernández S, González-Sampériz P et al (2010) Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev Palaeobot Palynol 162:458–475CrossRefGoogle Scholar
  26. Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in Mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  27. Conedera M, Krebs P (2008) History, present situation and perspective of the chestnut cultivation in Europe. Acta Hortic 784:2–8Google Scholar
  28. Conedera M, Stanga P, Oester B, Bachmann P (2001) Different post-culture dynamics in abandoned chestnut orchards. For Snow Landsc Res 76:487–492Google Scholar
  29. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004a) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179CrossRefGoogle Scholar
  30. Conedera M, Manetti MC, Giudici F, Amorini E (2004b) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecol Mediterr 30:179–193Google Scholar
  31. Conedera M, Tinner W, Crameri S, Torriani D, Herold A (2006) Taxon-related pollen source areas for lake basins in the southern Alps: an empirical approach. Veget Hist Archaeobot 15:263–272CrossRefGoogle Scholar
  32. Desprat S, Sánchez-Goñi MF, Loutre MF (2003) Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth Planet Sci Lett 213:63–78CrossRefGoogle Scholar
  33. Di Pasquale G, Allevato E, Ermolli ER et al (2010) Reworking the idea of chestnut (Castanea sativa Mill.) cultivation in Roman times: new data from ancient Campania. Plant Biosyst 144:865–873CrossRefGoogle Scholar
  34. Dorado M, Valdeolmillos A, Ruiz-Zapata MB (2001) Actividad humana y dinámica de la vegetación en la Sierra de Ávila (Sistema Central Español) desde el Bronce Medio. Polen 11:39–49Google Scholar
  35. Fabián J, Blanco-González A, López-Sáez JA (2006) La transición Calcolítico-Bronce Antiguo desde una perspectiva arqueológica y ambiental: el Valle Amblés (Ávila) como referencia. Arqueología Espacial 26:37–56Google Scholar
  36. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  37. Fernández-López J, Monteagudo AB (2010) Genetic structure of wild Spanish populations of Castanea sativa as revealed by isozyme analysis. For Syst 19:156–169Google Scholar
  38. Fernández-López J, Zas R, Blanco-Silva R, Díaz R (2005) Geographic differentiation in adaptative traits of wild chestnut Spanish populations (Castanea sativa Miller). Invest Agrar: Sist Recur For 14:13–26Google Scholar
  39. Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1,495–1,503CrossRefGoogle Scholar
  40. Franco-Múgica F, García-Antón M, Sainz-Ollero H (1997) Impacto antrópico y dinámica de la vegetación durante los últimos 2000 años BP en la vertiente septentrional de la Sierra de Gredos: Navarredonda (Ávila, España). Rev Paléobiol 16:29–45Google Scholar
  41. Frei T (1997) Pollen distribution at high elevation in Switzerland: evidence for medium range transport. Grana 30:201–209Google Scholar
  42. Gallardo J, Rico M, González MI (2000) Some ecological aspects of a chestnut coppice located at the Sierra de Gata mountains (Western Spain) and its relationship with a sustainable management. Ecol Mediterr 26:53–69Google Scholar
  43. Gallardo-Lancho J (2001) Distribution of chestnut (Castanea sativa Mill.) forests in Spain: possible ecological criteria for quality and management (focusing on timber coppices). For Snow Landsc Res 76:477–481Google Scholar
  44. Gandullo JM, Blanco A, Sánchez O, Rubio A, Elena R, Gómez V (2004) Las estaciones ecológicas de los castañares españoles., Monografías INIA Serie Forestal 7INIA, MadridGoogle Scholar
  45. García-Amorena I, Gómez-Manzaneque F, Rubiales JM, Granja HM, Soares de Carvalho G, Morla C (2007) The Late Quaternary coastal forests of western Iberia: a study of their macroremains. Palaeogeogr Palaeoclimatol Palaeoecol 254:448–461CrossRefGoogle Scholar
  46. García-Antón M, Morla C, Sainz H (1990) Consideraciones sobre la presencia de algunos vegetales relictos terciarios durante el Cuaternario en la Península Ibérica. Bol R Soc Esp Hist Nat Sec Biol 86:95–105Google Scholar
  47. García-Garcimartín HJ (2002) Articulación jurisdiccional y dinámica socioeconomic de un espacio natural: la Cuenca del Alberche (siglos XII-XV). Ph.D. Dissertation, Universidad Complutense, MadridGoogle Scholar
  48. García-López JM, Allué-Camacho C (2008) Factorial ambits with high phytoclimatic viability for chestnut (Castanea sativa) in Spain. Acta Hortic 784:113–118CrossRefGoogle Scholar
  49. García-Mozo H, Domínguez-Vilches E, Galán C (2007) Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Córdoba, Southern Spain. Ann Agric Environ Med 14:63–69Google Scholar
  50. Génova M, Gómez-Manzaneque F, Morla C (2009) Los bosques de Gredos a través del tiempo. Junta de Castilla y León, ValladolidGoogle Scholar
  51. Goeury C, De Beaulieu JL (1979) À propos de la concentration du pollen à l’aide de la liqueur de Thoulet dans les sédiments minéraux. Pollen Spores 21:239–251Google Scholar
  52. Gómez-Orellana L, Ramil-Rego P, Muñoz-Sobrino C (2007) The Würm in NW Iberia, a pollen record from Area Longa (Galicia). Quat Res 67:438–452CrossRefGoogle Scholar
  53. Grimm EC (1987) Coniss: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  54. Grimm EC (1992) Tilia, version 2. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  55. Grimm EC (2004) TGView. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  56. Hernando MR (2002) Indigenismo y romanización del territorio abulense (s. V a.C.-s. III d.C.). Ph.D. Dissertation, Universidad Complutense, MadridGoogle Scholar
  57. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  58. Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veget Hist Archaeobot 13:145–160CrossRefGoogle Scholar
  59. Krebs P, Koutsias N, Conedera M (2012) Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. J Hist Geogr 38:372–386CrossRefGoogle Scholar
  60. Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G (2004) Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J Evol Biol 17:1,286–1,296CrossRefGoogle Scholar
  61. López-Merino L, López-Sáez JA, Sánchez-Palencia FJ, Reher GS, Pérez-Díaz S (2009a) Castaños, nogales y cereales: la antropización de los paisajes de Asturias y León en época romana. Cuad Soc Esp Cienc For 30:93–99Google Scholar
  62. López-Merino L, López-Sáez JA, Alba-Sánchez F, Pérez-Díaz S, Carrión JS (2009b) 2000 years of pastoralism and fire shaping high-altitude vegetation of Sierra de Gredos in central Spain. Rev Palaeobot Palynol 158:42–51CrossRefGoogle Scholar
  63. López-Sáez JA (1995) Las comunidades de Prunus lusitanica L. del Valle del Tiétar (Sierra de Gredos, Ávila). Anales de Biología 20 (Biología Vegetal 9), pp 111–113Google Scholar
  64. López-Sáez JA, Blanco-González A (2005) La mutación Bronce Final/Primer Hierro en el suroeste de la Cuenca del Duero (provincia de Ávila): ¿cambio ecológico y social? In: Blanco A, Cancelo C, Esparza A (eds) Bronce Final y Edad del Hierro en la Península Ibérica. Universidad de Salamanca, Salamanca, pp 229–250Google Scholar
  65. López-Sáez JA, López-García P (1994) Contribution of the palaeoecological knowledge of Quaternary in the Tiétar Valley (Sierra de Gredos, Ávila, Spain). Rev Esp Micropal 26:61–66Google Scholar
  66. López-Sáez JA, López-García P, Macías R (1991) Análisis polínico del yacimiento arqueológico de El Raso de Candeleda (Ávila). Actas de Gredos 11:39–44Google Scholar
  67. López-Sáez JA, López-García P, Gómez C, Gil P (1996) Acerca del origen del castaño (Castanea sativa) en el valle del Tiétar (Sierra de Gredos, Ávila). In: Ruiz-Zapata MB (ed) Estudios Palinológicos. Universidad de Alcalá, Alcalá de Henares, pp 79–82Google Scholar
  68. López-Sáez JA, Dorado M, Burjachs F, Ruiz-Zapata MB, López-García P, Fabián JF (2003) Paleoambiente y paleoeconomía durante la Prehistoria en el Valle Amblés (Ávila). Polen 13:129–141Google Scholar
  69. López-Sáez JA, López-Merino L, Pérez-Díaz S (2008) Los vettones y sus paisajes: paleoambiente y paleoeconomía de los castros de Ávila. Zona Arqueológica 12:140–152Google Scholar
  70. López-Sáez JA, Blanco-González A, López-Merino L et al (2009a) Landscape and climatic changes during the end of the Late Prehistory in the Amblés Valley (Ávila, central Spain), from 1200 to 400 cal bc. Quat Int 200:90–101CrossRefGoogle Scholar
  71. López-Sáez JA, López-Merino L, Alba-Sánchez F, Pérez-Díaz S (2009b) Contribución paleoambiental al estudio de la trashumancia en el sector abulense de la Sierra de Gredos. Hispania 231:9–38CrossRefGoogle Scholar
  72. López-Sáez JA, Alba-Sánchez F, López-Merino L, Pérez-Díaz S (2010a) Modern pollen analysis: a reliable tool for discriminating Quercus rotundifolia communities in Central Spain. Phytocoenologia 40:57–72CrossRefGoogle Scholar
  73. López-Sáez JA, López-Merino L, Alba-Sánchez F, Pérez-Díaz S, Abel-Schaad D, Carrión JS (2010b) Late Holocene ecological history of Pinus pinaster forests in the Sierra de Gredos of central Spain. Plant Ecol 206:195–209CrossRefGoogle Scholar
  74. López-Sáez JA, Sánchez-Mata D, Alba-Sánchez F, Abel-Schaad D, Gavilán RG, Pérez-Díaz S (2013) Discrimination of Scots pine forests in the Iberian Central System (Pinus sylvestris var. iberica) by means of pollen analysis. Phytosociological considerations. Lazaroa 34:191–208CrossRefGoogle Scholar
  75. López-Sáez JA, Abel-Schaad D, Pérez-Díaz S et al (2014) Vegetation history, climate and human impact in the Spanish Central System over the last 9,000 years. Quat Int 353:98–122CrossRefGoogle Scholar
  76. López-Sáez JA, Alba-Sánchez F, Sánchez-Mata D, Abel-Schaad D, Gavilán RG, Pérez-Díaz S (2015) A palynological approach to the study of Quercus pyrenaica forest communities in the Spanish Central System. Phytocoenologia 45:107–124CrossRefGoogle Scholar
  77. Luceño M, Vargas P (1991) Guía Botánica del Sistema Central Español. Anaya, MadridGoogle Scholar
  78. Manetti M, Amorini E, Becagli C, Conedera M, Giudici F (2001) Productive potential of chestnut (Castanea sativa Mill.) stands in Europe. For Snow Landsc Res 76:471–476Google Scholar
  79. Manrique E, Fernández-Cancio A (2000) Extreme climatic events in dendroclimatic reconstructions from Spain. Clim Chang 44:123–138Google Scholar
  80. Manzano E (1991) La frontera de al-Andalus en la época de los Omeyas. CSIC, MadridGoogle Scholar
  81. Mariné M (1995) El patrimonio arqueológico de la Sierra de Gredos. In: Troitiño MA (ed) Gredos: territorio, sociedad y cultura. Diputación de Ávila, Ávila, pp 19–48Google Scholar
  82. Martín-Puertas C, Valero-Garcés BL, Mata MP, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in southern Spain during the last 4000 years: the Zoñar Lake record, Córdoba. Holocene 18:907–921CrossRefGoogle Scholar
  83. Mattioni C, Cherubini M, Michelli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genomes 4:563–574CrossRefGoogle Scholar
  84. Mattioni C, Martin MA, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in European chestnut populations. Acta Hortic 866:163–167CrossRefGoogle Scholar
  85. Mercuri AM, Bandini-Mazzanti M, Florenzano A, Montecchi MC, Rattighieri E (2013) Olea, Juglans and Castanea: the OJC group as pollen evidence of the development of human-induced environments in the Italian península. Quat Int 303:24–42CrossRefGoogle Scholar
  86. Molina-Moreno JR (1992) Flora y vegetación del valle de Iruelas (Ávila). Cuadernos Abulenses 18:11–150Google Scholar
  87. Monsalvo JM (2003) Frontera pionera, monarquía en expansión y formación de los concejos de villa y tierra. Relaciones de poder en el realengo concejil entre el Duero y el Tajo (c. 1072-c. 1222). Arqueol Territ Med 10:45–126Google Scholar
  88. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, LondonGoogle Scholar
  89. Morales-Molino C, García-Antón M, Postigo-Mijarra JM, Morla C (2013) Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin. Quat Sci Rev 59:5–17CrossRefGoogle Scholar
  90. Morales-Molino C, Vescovi E, Krebs P et al (2015) The role of human-induced fire and sweet chestnut (Castanea sativa Mill.) cultivation on the long-term landscape dynamics of the southern Swiss Alps. Holocene 25:482–494CrossRefGoogle Scholar
  91. Morla C (1996) Especies forestales autóctonas y alóctonas en la restauración del tapiz vegetal de la península Ibérica. In: García-Fernández J (ed) Medio Ambiente y crisis rural. Universidad de Valladolid, Valladolid, pp 33–61Google Scholar
  92. Muñoz-Sobrino C, Ramil-Rego P, Gómez-Orellana L (2004) Vegetation of the Lago de Sanabria area (NW Iberia) since the end of the Pleistocene: a palaeoecological reconstruction on the basis of two new pollen sequences. Veget Hist Archaeobot 13:1–22CrossRefGoogle Scholar
  93. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  94. Pardo F, Gil L (2005) The impact of traditional land use on woodlands: a case study in the Spanish Central System. J Hist Geogr 31:390–408CrossRefGoogle Scholar
  95. Peeters AG, Zoller H (1988) Long range of transport of Castanea sativa pollen. Grana 27:203–207CrossRefGoogle Scholar
  96. Pezzi G, Maresi G, Conedera M, Ferrari C (2011) Woody species composition of chestnut stands in the Northern Apennines: the result of 200 years of changes in land use. Landsc Ecol 26:1,463–1,476CrossRefGoogle Scholar
  97. Pitte JR (1986) Terres de castanides: Hommes et paysages du châtaignier de l’Antiquité à nos jours. Librairie Arthème Fayard, EvreuxGoogle Scholar
  98. Postigo-Mijarra JM, Gómez F, Morla C (2008) Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene: first record of Aesculus L. (Hippocastanaceae) in Spain. Veget Hist Archaeobot 17:351–364CrossRefGoogle Scholar
  99. Postigo-Mijarra JM, Morla C, Barrón E, Morales-Molino C, García S (2010) Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Rev Palaeobot Palynol 162:416–426CrossRefGoogle Scholar
  100. Pulido F, Sanz R, Abel-Schaad D et al (2007) Los bosques de Extremadura, evolución, ecología y conservación. Junta de Extremadura, MéridaGoogle Scholar
  101. Pulido F, Valladares F, Calleja JA, Moreno G, González-Bornay G (2008) Tertiary relict trees in a Mediterranean climate: abiotic constraints on the persistence of Prunus lusitanica at the eroding edge of its range. J Biogeogr 35:1,425–1,435CrossRefGoogle Scholar
  102. Reille M (1992) Pollen et Spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  103. Reimer PJ, Bard E, Bayliss A et al (2013) Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  104. Rubiales JM, Hernández L, Romero F, Sanz C (2011) The use of forest resources in central Iberia during the Late Iron Age. Insights from the wood charcoal of Pintia, a Vaccaean oppidum. J Archaeol Sci 38:1–10CrossRefGoogle Scholar
  105. Rubio A, Sánchez-Mata D (1995) Consideraciones edafogeobotánicas sobre los castañares occidentales del Sistema Central Ibérico. In: Actas XX Reunión Nacional sobre Suelos: Degradación y conservación de suelos. Madrid, pp 265–273Google Scholar
  106. Rubio A, Escudero A, Gandullo JM (1997) Sweet chestnut silviculture in an ecological extreme of its range in the West of Spain (Extremadura). Ann Sci For 54:667–680CrossRefGoogle Scholar
  107. Rubio A, Gavilán R, Escudero A (1999) Are soil characteristics and understorey composition controlled by forest management? For Ecol Manag 113:191–200CrossRefGoogle Scholar
  108. Ruiz de la Torre J (2006) Flora Mayor. MIMAM, MadridGoogle Scholar
  109. Rull V (2009) Microrefugia. J Biogeogr 36:481–484CrossRefGoogle Scholar
  110. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109CrossRefGoogle Scholar
  111. Seijo F, Millington JDA, Gray R et al (2015) Forgetting fire: traditional fire knowledge in two chestnut forest ecosystems of the Iberian Peninsula and its implications for European fire management policy. Land Use Policy 47:130–144CrossRefGoogle Scholar
  112. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:614–621Google Scholar
  113. Taveira C (1979) Enfermedad de la tinta del castaño. Bol Serv Plagas 5:59–66Google Scholar
  114. Van Benthem F, Clarke GCS, Punt W (1984) The Northwest European Flora, 33. Fagaceae. Rev Palaeobot Palynol 42:87–110Google Scholar
  115. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer, Dordrecht, pp 99–119CrossRefGoogle Scholar
  116. Van Geel B, Berglund BE (2000) A causal link between a climate deterioration around 850 cal bc as a subsequent rise in human population density in NW-Europe? Terra Nostra 7:126–130Google Scholar
  117. Van Geel B, van der Plicht J, Kilian MR et al (1998) The sharp rise of Δ14C ca. 800 cal bc: possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40:535–550CrossRefGoogle Scholar
  118. Villani F, Sansotta A, Cherubini M, Cesaroni D, Sbordoni V (1999) Genetic structure of Castanea sativa in Turkey: evidence of a hybrid zone. J Evol Biol 12:233–244CrossRefGoogle Scholar
  119. Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer, Dordrecht, pp 75–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • José Antonio López-Sáez
    • 1
    Email author
  • Arthur Glais
    • 2
  • Sandra Robles-López
    • 1
  • Francisca Alba-Sánchez
    • 3
  • Sebastián Pérez-Díaz
    • 1
  • Daniel Abel-Schaad
    • 1
  • Reyes Luelmo-Lautenschlaeger
    • 1
  1. 1.Grupo de Investigación Arqueobiología, Instituto de HistoriaCentro de Ciencias Humanas y Sociales, C.S.I.C.MadridSpain
  2. 2.LETG CAEN GEOPHEN-UMR 6554 CNRSUniversité de Caen-NormandieCaen Cedex 5France
  3. 3.Departamento de Botánica, Facultad de Ciencias, Campus Universitario de Fuente NuevaUniversidad de GranadaGranadaSpain

Personalised recommendations