Advertisement

Vegetation History and Archaeobotany

, Volume 25, Issue 6, pp 541–553 | Cite as

A matter of dispersal: REVEALSinR introduces state-of-the-art dispersal models to quantitative vegetation reconstruction

  • Martin TheuerkaufEmail author
  • John Couwenberg
  • Anna Kuparinen
  • Volkmar Liebscher
Original Article

Abstract

The REVEALS model is applied in quantitative vegetation reconstruction to translate pollen percentage data from large lakes and peatlands into regional vegetation composition. The model was first presented in 2007 and has gained increasing attention. It is a core element of the Landcover 6k initiative within the PAGES project. The REVEALS model has two critical components: the pollen dispersal model and pollen productivity estimates (PPEs). To study the consequences of model settings, we implemented REVEALS in R. We use a state-of-the-art Lagrangian stochastic dispersal model (LSM) and compare model outcomes with calculations based on a conventional Gaussian plume dispersal model (GPM). In the LSM turbulence causes pollen fall speed to have little effect on the dispersal pattern whereas fall speed is a major factor in the GPM. Dispersal models are also used to derive PPEs. The unrealistic GPM produces PPEs that do not describe actual pollen productivity, but rather serve as a basin specific correction factor. A test with pollen and vegetation data from NE Germany shows that REVEALS performs best when applied with the LSM. REVEALS applications with the GPM can produce realistic results, but only if unrealistic PPEs are used. We discuss the derivation of PPEs and further REVEALS applications. Our REVEALS implementation is freely available as the ‘REVEALSinR’ function within the R package DISQOVER. REVEALSinR offers an environment for experimentation and analysing model sensitivities. We encourage further experiments and welcome comments on our tool.

Keywords

DISQOVER Lagrangian stochastic models Pollen Fall speed of pollen Pollen productivity estimates 

Notes

Acknowledgments

We dedicate this paper to the memory of Roel Janssen and Herb Wright, whose knowledge and positive critical stance remain an inspiration. We thank Almut Mrotzek, Max Wenzel and Hans Joosten for fruitful discussions as well as John Birks and an anonymous reviewer for valuable comments on the manuscript. This study has utilized infrastructure of the Terrestrial Environmental Observatory (TERENO) of the Helmholtz Association and is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis—ICLEA—of the Helmholtz Association (VH-VI-415). The study was funded by Academy of Finland (AK).

Supplementary material

334_2016_572_MOESM1_ESM.docx (322 kb)
Supplementary material 1 (DOCX 321 kb)

References

  1. Andersen ST (1970) The relative pollen productivity and pollen representativity of North European trees and correction factors for tree pollen spectra. Danmarks Geol Undersøgelser Ser II 96:1–99Google Scholar
  2. Bunting MJ, Twiddle CL, Middleton R (2008) Using models of pollen dispersal and deposition in hilly landscapes: some possible approaches. Palaeogeogr Palaeoclimatol Palaeoecol 259:77–91. doi: 10.1016/j.palaeo.2007.03.051 CrossRefGoogle Scholar
  3. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912CrossRefGoogle Scholar
  4. Feeser I, Dörfler W (2014) The glade effect: vegetation openness and structure and their influences on arboreal pollen production and the reconstruction of anthropogenic forest opening. Anthropocene 8:92–100. doi: 10.1016/j.ancene.2015.02.002 CrossRefGoogle Scholar
  5. Fyfe RM (2006) GIS and the application of a model of pollen deposition and dispersal: a new approach to testing landscape hypotheses using the POLLANDCAL models. J Archaeol Sci 33:483–493. doi: 10.1016/j.jas.2005.09.005 CrossRefGoogle Scholar
  6. Giddings GD, Sackville Hamilton NR, Hayward MD (1997) The release of genetically modified grasses. Part 1: pollen dispersal to traps in Lolium perenne. Theor Appl Genet 94:1,000–1,006. doi: 10.1007/s001220050507 CrossRefGoogle Scholar
  7. Gregory P (1945) The dispersion of air-borne spores. Trans Br Mycol Soc 28:26–72. doi: 10.1016/S0007-1536(45)80041-4 CrossRefGoogle Scholar
  8. Hofmann F, Otto M, Wosniok W (2014) Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation—results of 10 years of monitoring (2001 to 2010). Environ Sci Eur 26:24. doi: 10.1186/s12302-014-0024-3 CrossRefGoogle Scholar
  9. Hultberg T, Gaillard M-J, Grundmann B, Lindbladh M (2015) Reconstruction of past landscape openness using the Landscape Reconstruction Algorithm (LRA) applied on three local pollen sites in a southern Swedish biodiversity hotspot. Veget Hist Archaeobot 24:253–266. doi: 10.1007/s00334-014-0469-8 CrossRefGoogle Scholar
  10. Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75CrossRefGoogle Scholar
  11. Janssen CR (1959) Alnus as a disturbing factor in pollen diagrams. Acta Bot Neerl 8:55–58. doi: 10.1111/j.1438-8677.1959.tb00005.x CrossRefGoogle Scholar
  12. Janssen CR (1966) Recent pollen spectra from the deciduous and coniferous-deciduous forests of Northeastern Minnesota: a study in pollen dispersal. Ecology 47:804–825. doi: 10.2307/1934267 CrossRefGoogle Scholar
  13. Klein E, Lavigne C, Foueillassar X et al (2003) Corn pollen dispersal: quasi-mechanistic models and field experiments. Ecol Monogr 73:131–150CrossRefGoogle Scholar
  14. Kuparinen A (2006) Mechanistic models for wind dispersal. Trends Plant Sci 11:296–301. doi: 10.1016/j.tplants.2006.04.006 CrossRefGoogle Scholar
  15. Kuparinen A, Markkanen T, Riikonen H, Vesala T (2007) Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. Ecol Model 208:177–188. doi: 10.1016/j.ecolmodel.2007.05.023 CrossRefGoogle Scholar
  16. Matthias I, Nielsen AB, Giesecke T (2012) Evaluating the effect of flowering age and forest structure on pollen productivity estimates. Veget Hist Archaeobot 21:471–484. doi: 10.1007/s00334-012-0373-z CrossRefGoogle Scholar
  17. Mazier F, Gaillard M-J, Kuneš P et al (2012) Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev Palaeobot Palynol 187:38–49. doi: 10.1016/j.revpalbo.2012.07.017 CrossRefGoogle Scholar
  18. Mehl IK, Hjelle KL (2016) From deciduous forest to open landscape: application of new approaches to help understand cultural landscape development in western Norway. Veget Hist Archaeobot 25:153–176. doi: 10.1007/s00334-015-0539-6 CrossRefGoogle Scholar
  19. Nathan R, Katul GG, Horn HS et al (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413. doi: 10.1038/nature00844 CrossRefGoogle Scholar
  20. Nathan R, Katul GG, Bohrer G et al (2011) Mechanistic models of seed dispersal by wind. Theor Ecol 4:113–132. doi: 10.1007/s12080-011-0115-3 CrossRefGoogle Scholar
  21. Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes at c. AD 1800: an attempt to validate the POLLSCAPE model. J Biogeogr 31:1,693–1,709. doi: 10.1111/j.1365-2699.2004.01080.x CrossRefGoogle Scholar
  22. Nurminiemi M, Tufto J (1998) Spatial models of pollen dispersal in the forage grass meadow fescue. Evol Ecol 12:487–502. doi: 10.1023/A:1006529023036 CrossRefGoogle Scholar
  23. Parsons RW, Prentice IC (1981) Statistical approaches to R-values and the pollen—vegetation relationship. Rev Palaeobot Palynol 32:127–152CrossRefGoogle Scholar
  24. Pohl F (1937) Die Pollenerzeugung der Windblüter. Beih Bot Cent.bl 56:365–470Google Scholar
  25. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86. doi: 10.1016/0033-5894(85)90073-0 CrossRefGoogle Scholar
  26. Prentice IC, Webb T (1986) Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci 1:35–43. doi: 10.1002/jqs.3390010105 CrossRefGoogle Scholar
  27. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/
  28. Schmidt W (1918) Die Verbreitung von Samen und Blütenstaub durch die Luftbewegung. Oesterr Bot Z 67:313–328. doi: 10.1007/BF02126080 CrossRefGoogle Scholar
  29. Soons MB, Heil GW, Nathan R, Katul GG (2004) Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85:3,056–3,068. doi: 10.1890/03-0522 CrossRefGoogle Scholar
  30. Sugita S (1993) Pollen dispersal model for an entire lake surface. Quat Res 39:239–244CrossRefGoogle Scholar
  31. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 2:229–242CrossRefGoogle Scholar
  32. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 2:243–258CrossRefGoogle Scholar
  33. Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421. doi: 10.1191/095968399666429937 CrossRefGoogle Scholar
  34. Sutton OG (1947) The problem of diffusion in the lower atmosphere. Q J R Meteorol Soc 73:257–276CrossRefGoogle Scholar
  35. Sutton OG (1953) Micrometeorology: a study of physical processes in the lowest layers of the earth’s atmosphere. McGraw-Hill, New YorkGoogle Scholar
  36. Tackenberg O (2003) Modelling long-distance dispersal of plant diaspores by wind. Ecol Monogr 73:173–189CrossRefGoogle Scholar
  37. Tauber H (1965) Differential pollen dispersion and the interpretation of pollen diagrams. Danmarks Geol Undersøgelser Ser II 89:1–69Google Scholar
  38. Theuerkauf M, Joosten H (2009) Substrate dependency of Lateglacial forests in north-east Germany: untangling vegetation patterns, ecological amplitudes and pollen dispersal in the past by downscaling regional pollen. J Biogeogr 36:942–953. doi: 10.1111/j.1365-2699.2008.02047.x CrossRefGoogle Scholar
  39. Theuerkauf M, Kuparinen A, Joosten H (2013) Pollen productivity estimates strongly depend on assumed pollen dispersal. Holocene 23:14–24. doi: 10.1177/0959683612450194 CrossRefGoogle Scholar
  40. Theuerkauf M, Bos JAA, Jahns S et al (2014) Corylus expansion and persistent openness in the early Holocene vegetation of northern central Europe. Quat Sci Rev 90:183–198. doi: 10.1016/j.quascirev.2014.03.002 CrossRefGoogle Scholar
  41. Theuerkauf M, Dräger N, Kienel U et al (2015) Effects of changes in land management practices on pollen productivity of open vegetation during the last century derived from varved lake sediments. Holocene 25:733–744. doi: 10.1177/0959683614567881 CrossRefGoogle Scholar
  42. Tufto J, Engen S, Hindar K (1997) Stochastic dispersal processes in plant populations. Theor Popul Biol 52:16–26CrossRefGoogle Scholar
  43. von Post L (1918) Skogsträdpollen i sydsvenska torvmosselagerföljder. Forhandlinger ved 16. Skandinaviske Naturforsheresmøte 1916:433–465Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Theuerkauf
    • 1
    • 3
    Email author
  • John Couwenberg
    • 2
    • 3
  • Anna Kuparinen
    • 4
  • Volkmar Liebscher
    • 5
  1. 1.Institute for Geography and GeologyErnst-Moritz-Arndt-University GreifswaldGreifswaldGermany
  2. 2.Institute of Botany and Landscape EcologyErnst-Moritz-Arndt-University GreifswaldGreifswaldGermany
  3. 3.Greifswald Mire CenterGreifswaldGermany
  4. 4.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  5. 5.Institute for Mathematics and InformaticsErnst-Moritz-Arndt-University of GreifswaldGreifswaldGermany

Personalised recommendations