Advertisement

Vegetation History and Archaeobotany

, Volume 25, Issue 5, pp 499–519 | Cite as

Holocene vegetation and fire history of the mountains of Northern Sicily (Italy)

  • Willy TinnerEmail author
  • Elisa Vescovi
  • Jacqueline F. N. van Leeuwen
  • Daniele Colombaroli
  • Paul D. Henne
  • Petra Kaltenrieder
  • César Morales-Molino
  • Giorgia Beffa
  • Bettina Gnaegi
  • W. O. van der Knaap
  • Tommaso La Mantia
  • Salvatore Pasta
Original Article

Abstract

Knowledge about vegetation and fire history of the mountains of Northern Sicily is scanty. We analysed five sites to fill this gap and used terrestrial plant macrofossils to establish robust radiocarbon chronologies. Palynological records from Gorgo Tondo, Gorgo Lungo, Marcato Cixé, Urgo Pietra Giordano and Gorgo Pollicino show that under natural or near natural conditions, deciduous forests (Quercus pubescens, Q. cerris, Fraxinus ornus, Ulmus), that included a substantial portion of evergreen broadleaved species (Q. suber, Q. ilex, Hedera helix), prevailed in the upper meso-mediterranean belt. Mesophilous deciduous and evergreen broadleaved trees (Fagus sylvatica, Ilex aquifolium) dominated in the natural or quasi-natural forests of the oro-mediterranean belt. Forests were repeatedly opened for agricultural purposes. Fire activity was closely associated with farming, providing evidence that burning was a primary land use tool since Neolithic times. Land use and fire activity intensified during the Early Neolithic at 5000 bc, at the onset of the Bronze Age at 2500 bc and at the onset of the Iron Age at 800 bc. Our data and previous studies suggest that the large majority of open land communities in Sicily, from the coastal lowlands to the mountain areas below the thorny-cushion Astragalus belt (ca. 1,800 m a.s.l.), would rapidly develop into forests if land use ceased. Mesophilous Fagus-Ilex forests developed under warm mid Holocene conditions and were resilient to the combined impacts of humans and climate. The past ecology suggests a resilience of these summer-drought adapted communities to climate warming of about 2 °C. Hence, they may be particularly suited to provide heat and drought-adapted Fagus sylvatica ecotypes for maintaining drought-sensitive Central European beech forests under global warming conditions.

Keywords

Pollen Macrofossils Charcoal Mediterranean Climate change Fagus sylvatica Abies nebrodensis 

Notes

Acknowledgments

We thank Willi Tanner for technical advice during the coring and Florencia Oberli for palynological sample preparation, Brigitta Ammann for her steady support, Tomasz Goslar for radiocarbon dating, Walter Finsinger, Todd J. Hawbaker, Robert S. Thompson, and an anonymous reviewer for valuable comments on the manuscript. WT is grateful to the Swiss National Science Foundation for supporting this study (SNF PP00P2-114886) and CMM acknowledges the Swiss Government Excellence Postdoctoral Scholarship (2014.0386). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Abrantes F, Voelker AHL, Sierro FJ, Naughton F, Rodrigues T, Cacho I, Ariztegui D, Brayshaw D, Sicre M-A, Batista L (2012) Paleoclimate variability in the Mediterranean Region. In: Lionello P (ed) The climate of the Mediterranean region—from the past to the future. Elsevier, Amsterdam, pp 1–86Google Scholar
  2. Allen HD (2001) Mediterranean Ecogeography. Pearson Education, HarlowGoogle Scholar
  3. Ammann B, Birks HJB, Brooks SJ, Eicher U, Von Grafenstein U, Hofmann W, Lemdahl G, Schwander J, Tobolski K, Wick L (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347CrossRefGoogle Scholar
  4. Ammann B, Van Raden UJ, Schwander J et al (2014) Responses to rapid warming at Termination la at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr Palaeoclimatol Palaeoecol 401:183–184CrossRefGoogle Scholar
  5. Baldi M, Crisci A, Genesio L, Piani F, Meneguzzo F, Dalu GA, El Asmar T (2004) Remote climate processes underlying summer drought events in the Mediterranean. In: Balwois conference 2004. Ohrid, FY Republic of Macedonia, pp 1–12Google Scholar
  6. Bazan G, Marino P, Guarino R, Domina G, Schicchi R (2015) Bioclimatology and vegetation series in Sicily: a geostatistical approach. Ann Bot Fenn 52:1–18CrossRefGoogle Scholar
  7. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  8. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484Google Scholar
  9. Bertolani Marchetti D, Accorsi CA, Arobba D et al (1984) Recherches géobotaniques sur les Monts Madonie (Sicile du Nord). Webbia 38:329–348CrossRefGoogle Scholar
  10. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  11. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  12. Bisculm M, Colombaroli D, Vescovi E et al (2012) Holocene vegetation and fire dynamics in the supra-mediterranean belt of the Nebrodi Mountains (Sicily, Italy). J Quat Sci 27:687–698CrossRefGoogle Scholar
  13. Brayshaw DJ, Rambeau CMC, Smith SJ (2011) Changes in Mediterranean climate during the Holocene: insights from global and regional climate modelling. Holocene 21:15–31CrossRefGoogle Scholar
  14. Brullo S, Cormaci A, Giusso del Galdo G, Guarino R, Minissale P, Siracusa G, Spampinato G (2005) A syntaxonomical survey of the Sicilian dwarf shrub vegetation belonging to the class Rumici-Astragaletea siculi. Annali di Botanica 5:57–104Google Scholar
  15. Brullo C, Brullo S, Giusso del Galdo G, Guarino R, Siracusa G, Sciandrello S (2012) The class Querco-Fagetea sylvaticae in Sicily: an example of boreo-temperate vegetation in the central Mediterranean region. Annali di Botanica 2:19–38Google Scholar
  16. Brullo C, Brullo S, Downie SR, Danderson CA, Giusso del Galdo G (2013a) Siculosciadium, a new monotypic genus of Apiaceae from Sicily. Ann Mo Bot Gard 99:1–18CrossRefGoogle Scholar
  17. Brullo C, Brullo S, Giusso del Galdo G (2013b) Considerations on the endemic flora of Sicily. In: Cardona Pons E, Estaún Clarisó I, Comas Casademon M, Fraga i Arguimbau P (eds) Islands and plants: preservation and understanding of flora on Mediterranean Islands. Maó, Institut Menorquí d’Estudis, Consell Insular de Menorca, Es Mercadal, pp 177–1999Google Scholar
  18. Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 Years of european climate variability and human susceptibility. Science 331:578–582CrossRefGoogle Scholar
  19. Cacho I, Grimalt JO, Canals M, Sbaffi L, Shackleton NJ, Schonfeld J, Zahn R (2001) Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16:40–52CrossRefGoogle Scholar
  20. Calò C, Henne PD, Curry B et al (2012) Spatio-temporal patterns of Holocene environmental change in southern Sicily. Paleogeogr Paleoclimatol Paleoecol 323:110–122CrossRefGoogle Scholar
  21. Calò C, Henne PD, Eugster P et al (2013) 1200 years of decadal-scale variability of Mediterranean vegetation and climate at Pantelleria Island, Italy. Holocene 23:1,477–1,486CrossRefGoogle Scholar
  22. Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2,047–2,066CrossRefGoogle Scholar
  23. Carrión JS, Fernández S, Jiménez-Moreno G et al (2010) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74:731–736CrossRefGoogle Scholar
  24. Colombaroli D, Tinner W (2013) Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23:1,477–1,486CrossRefGoogle Scholar
  25. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95:755–770CrossRefGoogle Scholar
  26. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576CrossRefGoogle Scholar
  27. Cullotta S, Pasta S (2004) Vegetazione mediterranea: Sicilia, Sardegna, Calabria. In: Blasi C et al (eds) Incendi e complessità ecosistemica. Dalla pianificazione forestale al recupero ambientale. Ministero dell’Ambiente e della Tutela del Territorio & Società Botanica Italiana, Palombi & Partner, Rome, pp 291–307Google Scholar
  28. Czucz B, Galhidy L, Matyas C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 68:99–108CrossRefGoogle Scholar
  29. Davis BAS, Collins PM, Kaplan JO (2015) The age and post-glacial development of the modern European vegetation: a plant functional approach based on pollen data. Veget Hist Archaeobot 24:303–317CrossRefGoogle Scholar
  30. Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L) in Europe. Evolution 50:2,515–2,520CrossRefGoogle Scholar
  31. Di Benedetto L, Maugeri G, Poli Marchese E (1984) Principali tappe del dinamismo della vegetazione nelle Sugherete della Sicilia sud-orientale. Notiziario Fitosociologico 19:5–12Google Scholar
  32. Ellenberg H (2009) Vegetation ecology of Central Europe. Cambridge University Press, CambridgeGoogle Scholar
  33. Federici MF, Mangialardi C (1995) Prospetto delle associazioni vegetali riferibili alla classe Quercetea ilicis in Italia. Atti dei Convegni dei Lincei 115:391–404Google Scholar
  34. Finsinger W, Tinner W (2005) Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297CrossRefGoogle Scholar
  35. Finsinger W, Colombaroli D, De Beaulieu J-L et al (2010) Early to mid-Holocene climate change at Lago dell’Accesa (central Italy): climate signal or anthropogenic bias? J Quat Sci 25:1,239–1,247CrossRefGoogle Scholar
  36. Frei M (1940) Die Pflanzen-Assoziationen der alpinen Stufe des Ätna. Berichte des Geobotanischen Forschunginstituts Rübel-Zürich 1939:86–92Google Scholar
  37. Frisia S, Borsato A, Mangini A, Spötl C, Madonia G, Sauro U (2006) Holocene climate variability in Sicily from a discontinuous stalagmite record and the Mesolithic to Neolithic transition. Quat Res 66:388–400CrossRefGoogle Scholar
  38. Guarino R, Giusso Del Galdo G, Pignatti S (2006) The Mediterranean dwarf shrubs: origin and adaptive radiation. Annali di Botanica 5:93–101Google Scholar
  39. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  40. Henne PD, Elkin C, Franke J et al (2015) Reviving extinct Mediterranean forests increases ecosystem potential in a warmer future. Front Ecol Environ 13:356–362CrossRefGoogle Scholar
  41. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  42. Howe S, Webb T III (1983) Calibrating pollen data in climatic terms: improving the methods. Quaty Sci Rev 2:17–51CrossRefGoogle Scholar
  43. Juggins S (1991) ZONE Software. University of Newcastle upon Tyne, Tyne and WearGoogle Scholar
  44. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Fischer, JenaGoogle Scholar
  45. Leighton R (1999) Sicily before history: an archaeological survey from the Palaeolithic to the Iron Age. Cornell University Press, New YorkGoogle Scholar
  46. Lentini F, Carbone S (2014) Geologia della Sicilia - Geology of Sicily. Memorie Descr. Carta Geologica d’Italia 95:7–414Google Scholar
  47. Luterbacher J, García-Herrera R, Akcer-On S et al (2012) A review of 2000 years of Paleoclimatic evidence in the Mediterranean. In: Lionello P (ed) The climate of the Mediterranean region—from the past to the future. Elsevier, Amsterdam, pp 87–185Google Scholar
  48. Magny M, Vannière B, Calò C et al (2011) Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quat Sci Rev 30:2,459–2,475CrossRefGoogle Scholar
  49. Magny M, Peyron O, Sadori L, Ortu E, Zanchetta G, Vannière B, Tinner W (2012) Contrasting patterns of precipitation seasonality during the Holocene in the south- and north-central Mediterranean. J Quat Sci 27:290–296CrossRefGoogle Scholar
  50. Maise C (1998) Archäoklimatologie - Vom Einfluss nacheiszeitlicher Klimavariabilität in der Ur- und Frühgeschichte. Jahrb Schweiz Ges Ur- und Frühgesch 81:197–235Google Scholar
  51. Marchal O, Cacho I, Stocker TF et al (2002) Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat Sci Rev 21:455–483CrossRefGoogle Scholar
  52. Maugeri G, Leonardi S (1974) Esempio di macchia a Ginepro e Lentisco nella Sicilia meridionale. Archivio Botanico e Biogeografico Italiano 50:51–60Google Scholar
  53. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1,333–1,345CrossRefGoogle Scholar
  54. Mercuri AM, Mazzanti MB, Torri P et al (2012) A marine/terrestrial integration for mid-late Holocene vegetation history and the development of the cultural landscape in the Po valley as a result of human impact and climate change. Veget Hist Archaeobot 21:353–372CrossRefGoogle Scholar
  55. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell Scientific Publications, LondonGoogle Scholar
  56. Morales-Molino C, García-Antón M (2014) Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain). Quat Res 81:63–77CrossRefGoogle Scholar
  57. Muller SD, Rhazi L, Andrieux B et al (2015) Vegetation history of the western Rif mountains (NW Morocco): origin, late-Holocene dynamics and human impact. Veget Hist Archaeobot 24:487–501CrossRefGoogle Scholar
  58. Noti R, van Leeuwen JFN, Colombaroli D et al (2009) Mid- and late-Holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, Italy. Veget Hist Archaeobot 18:371–387CrossRefGoogle Scholar
  59. ODA (2015) Osservatorio della Acque. Annali, termometria e pluviometria. Regione Siciliana. http://www.osservatorioacque.it/
  60. Pérez-Sanz A, González-Sampériz P, Moreno A et al (2013) Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quat Sci Rev 73:149–169CrossRefGoogle Scholar
  61. Pignatti S (1997) Ecologia del paesaggio. Unione Tipografico-Editrice Torinese (UTET), TorinoGoogle Scholar
  62. Punt W et al. (1976–1996) The Northwest European Pollen Flora (NEPF) vol 1 (1976), vol 2 (1980), vol 3 (1981), vol 4 (1984) vol 5 (1988), vol 6 (1991), vol 7 (1996). Elsevier, AmsterdamGoogle Scholar
  63. Punt W, Blackmore S, Nilsson S, Le Thomas A (1994) Glossary of pollen and spore terminology. LPP Contrib Ser 1:1–71Google Scholar
  64. Reed JM, Stevenson AC, Juggins S (2001) A multi-proxy record of Holocene climatic change in southwestern Spain: the Laguna de Medina, Cadiz. Holocene 11:707–719CrossRefGoogle Scholar
  65. Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique hostorique et Palynologie, MarseilleGoogle Scholar
  66. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  67. Reisigl H, Danesch E, Danesch O (1992) Mittelmeerflora. Parkland, StuttgartGoogle Scholar
  68. Sadori L, Narcisi B (2001) The Postglacial record of environmental history from Lago di Pergusa, Sicily. Holocene 11:655–671CrossRefGoogle Scholar
  69. Sadori L, Jahns S, Peyron O (2011) Mid-Holocene vegetation history of the central Mediterranean. Holocene 21:117–129CrossRefGoogle Scholar
  70. Sadori L, Masi A, Ricotta C (2015) Climate-driven past fires in central Sicily. Plant Biosyst 149:166–173CrossRefGoogle Scholar
  71. Schwörer C, Henne PD, Tinner W (2014) A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob Chang Biol 20:1,512–1,526CrossRefGoogle Scholar
  72. Seppä H, Birks HJB, Odland A, Poska A, Veski S (2004) A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr 31:251–267CrossRefGoogle Scholar
  73. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  74. Tinner W, Ammann B (2005) Long-term responses of mountain ecosystems to environmental changes: Resilience, adjustment, and vulnerability. In: Huber UM, Bugmann H, Reasoner M (eds) Global change and mountain research—state of knowledge overview. Springer, Dordrecht, pp 133–144CrossRefGoogle Scholar
  75. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505CrossRefGoogle Scholar
  76. Tinner W, Conedera M, Ammann B, Gäggeler HW, Gedye S, Jones R, Sägesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8:31–42CrossRefGoogle Scholar
  77. Tinner W, Lotter AF, Ammann B, Conedera M, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1,447–1,460CrossRefGoogle Scholar
  78. Tinner W, Van Leeuwen JFN, Colombaroli D, Vescovi E, van der Knaap WO, Henne PD, Pasta S, D’Angelo S, La Mantia T (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28:1,498–1,510CrossRefGoogle Scholar
  79. Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JRM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439CrossRefGoogle Scholar
  80. Tinner W, Beer R, Bigler C, Clegg BF, Jones RT, Kaltenrieder P, van Raden UJ, Gilli A, Hu FS (2015) Late-Holocene climate variability and ecosystem responses in Alaska inferred from high-resolution multiproxy sediment analyses at Grizzly Lake. Quat Sci Rev 126:41–56CrossRefGoogle Scholar
  81. Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17CrossRefGoogle Scholar
  82. Wirtz KW, Lemmen C (2003) A global dynamic model for the neolithic transition. Clim Change 59:333–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Willy Tinner
    • 1
    Email author
  • Elisa Vescovi
    • 1
  • Jacqueline F. N. van Leeuwen
    • 1
  • Daniele Colombaroli
    • 1
  • Paul D. Henne
    • 1
    • 2
  • Petra Kaltenrieder
    • 1
  • César Morales-Molino
    • 1
  • Giorgia Beffa
    • 1
  • Bettina Gnaegi
    • 1
  • W. O. van der Knaap
    • 1
  • Tommaso La Mantia
    • 3
  • Salvatore Pasta
    • 4
  1. 1.Institute of Plant Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Geosciences and Environmental Change Science Center, U.S. Geological SurveyDenver Federal CenterDenverUSA
  3. 3.Department of Agrarian and Forestry Sciences (SAF)University of PalermoPalermoItaly
  4. 4.Department of BiologyUniversity of FribourgFribourgSwitzerland

Personalised recommendations