Advertisement

Vegetation History and Archaeobotany

, Volume 25, Issue 5, pp 459–468 | Cite as

The isotopic footprint of irrigation in the western Mediterranean basin during the Bronze Age: the settlement of Terlinques, southeast Iberian Peninsula

  • Adrián Mora-GonzálezEmail author
  • Antonio Delgado-Huertas
  • Arsenio Granados-Torres
  • Francisco Contreras Cortés
  • Francisco Javier Jover Maestre
  • Juan Antonio López Padilla
Original Article

Abstract

The isotopic composition of the remains of cereals and pine has been studied, from three different chronological phases from 2140 to 1500 cal bc at the Terlinques site, southeast Iberian Peninsula. The δ13C values range between −24.91 and −21.19 ‰ (V-PDB), with an average of −23.05 ‰ (STD = 0.69). The archaeological cereals show an average isotopic discrimination (Δ13C) with the past atmospheric CO2 of 16.96 ‰, which is much greater than the average Δ13C of 13.89 ‰ of the rainfed Triticeae (wheat and barley) in modern times. However, considering the effect of the atmospheric CO2 concentration, which is included in the WUEi (intrinsic water-use efficiency), this difference is even greater, 77 for archaeological samples versus 144 for present-day rainfed cereals. This could represent some of the earliest evidence of the use of irrigation techniques in Europe. Modern cereals which have been irrigated show a general Δ13C average of 17.17 ‰, very similar to those of the middle Holocene. However, when the WUEi is calculated, the value of 108 indicates that present-day irrigated cereals are more stressed than the archaeological samples. For comparison, we have included pine trees, since these have an extensive root development which is capable of reaching the water table. In the past, both cereals and pine present similar WUEi values (77 vs. 72), however at present only irrigated cereals show similar WUEi values to pine (108 vs. 107). This again suggests irrigation of cereals in the past. The processes of climatic degradation towards drier conditions which started in the middle Holocene could be responsible for the use of land near water sources, on riverbanks and near shallow lakes. According to the isotopic and plant macrofossil data, irrigation or water management techniques were used at the Terlinques site, located close to the Laguna de Villena, a lake which has now dried out.

Keywords

δ13Stable isotopes WUEi Early agriculture Global change Archaeobotany 

Notes

Acknowledgements

This work was supported by a FPU grant at the Spanish Ministerio de Educación, Cultura y Deporte AP2012-1353. This research has been carried out within the framework of “Proyecto Terlinques” funded by Conselleria de Cultura, Educación y Deportes of Generalitat Valenciana and the Project RNM-8011, the research groups RNM309 and HUM274 (Junta de Andalucía). We appreciate the willing disposition of Jesús Guardiola for the help in carrying out sampling in the town of Villena and Sergio Martínez for drawing the map. We wish to thank Corrie C. Bakels, James Greig and two anonymous reviewers for their comments.

References

  1. Adams R (1974) Historic patterns of Mesopotamian agriculture. In: Downing TE, Gibson M (eds) Irrigation´s impact on society (Anthropological Papers 25). The University of Arizona Press, Tucson, pp 1–6Google Scholar
  2. Adams R (1981) Heartland of cities. Surveys of ancient settlement and land use of the central foodplain of the Euphrates. The Universtity of Chicago Press, ChicagoGoogle Scholar
  3. Aguilera M, Araus JL, Voltas J, Rodriguez Ariza MO, Molina F, Rovira N, Buxó R, Ferrio Díaz JP (2008) Stable carbon and nitrogen isotopes and quality traits of fossil cereal grains provide clues on sustainability at the beginnings of Mediterranean agriculture. Rapid Commun Mass Spectrom 22:1,653–1,663CrossRefGoogle Scholar
  4. Aguilera M, Espinar C, Ferrio Díaz JP, Pérez G, Voltas J (2009) A map of autumn precipitation for the third millennium bp in the Eastern Iberian Peninsula from charcoal carbon isotopes. J Geochem Explor 102:157–165CrossRefGoogle Scholar
  5. Aguilera M, Ferrio Díaz JP, Pérez G, Araus JL, Voltas J (2011) Holocene changes in precipitation seasonality in the western Mediterranean Basin: a multi-species approach using δ13C of archaeological remains. J Quat Sci. doi: 10.1002/jqs.1533 Google Scholar
  6. Alonso MA (1996) Flora y vegetación del Valle de Villena (Alicante). Generalitat Valenciana. Conselleria de Cultura, Educació i Ciència. Instituto de Cultura “Juan Gil-Albert”, AlicanteGoogle Scholar
  7. Anyia A, Slaski J, Nyachiro J, Archambault D, Juskiw P (2007) Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. J Agron Crop Sci 193:313–323CrossRefGoogle Scholar
  8. Aranbarri J, González-Sampériz P, Valero-Garcés B et al (2014) Rapid climatic changes and resilient vegetation during the lateglacial and Holocene in a continental region of south-western Europe. Glob Planet Change 114:50–65CrossRefGoogle Scholar
  9. Araus JL, Buxó R (1993) Changes in carbon isotope discrimination in grain cereals form the north-western Mediterranean basin during the past seven millennia. Aust J Plant Physiol 20:117–128CrossRefGoogle Scholar
  10. Araus JL, Buxó R, Febrero A, Camalich MD, Martin D, Molina F, Rodríguez-Ariza MO, Voltas J (1997) Identification of ancient irrigation practise based on the carbon isotope discrimination of plant seeds: a case study from South-East Iberian Peninsula. JAS 24:729–740Google Scholar
  11. Araus JL, Slafer GA, Buxó R, Romagosa I (2003) Productivity in prehistoric agriculture: physiological models for the quantification of cereal yields as an alternative to traditional approaches. JAS 30:681–693Google Scholar
  12. Araus JL, Ferrio Díaz JP, Voltas J, Aguilera M, Buxó R (2014) Agronomic conditions and crop evolution in ancient Near East agriculture. Nat Commun. doi: 10.1038/ncomms4953 Google Scholar
  13. Arens NC, Hope Jahren A, Admundson R (2000) Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26:137–164CrossRefGoogle Scholar
  14. Barnard RL, Salmon Y, Kodama N, Sörgel K, Holst J, Rennenberg H, Gessler A, Buchmann N (2007) Evaporative enrichment and time lags between δ 18O of leaf water and organic pools in a pine stand. Plant Cell Environ 30:539–550CrossRefGoogle Scholar
  15. Bender B (1971) Variations in 13C/12C ratios of plants in relation of the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1,239–1,244CrossRefGoogle Scholar
  16. Bienert H-D, Hässer J (eds) (2004) Men of dikes and canals: the archaeology of water in the Middle East. Leidorf, RahdenGoogle Scholar
  17. Bourke SJ (2008) The Chalcolithic period. In: Adams RB (ed) Jordan: an archaeological reader. Equinox Books, London, pp 109–160Google Scholar
  18. Brandes E (2007) Water and nitrogen balance of trees in a dry stand. Albert-Ludwigs University, FreiburgGoogle Scholar
  19. Brandes E, Kodama N, Whittaker K, Weston C, Rennenberg H, Keitel C, Adams MA, Gessler A (2006) Short-term variation in the isotopic composition of organic matter allocated from leaves to the stem Pinus sylvestris: effects of photosynthetic and postphotosynthetic carbon isotope fractionation. Glob Change Biol 12:1,922–1,939CrossRefGoogle Scholar
  20. Brooks JR, Flanagan LB, Buchmann N, Ehleringer JR (1997) Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110:301–311CrossRefGoogle Scholar
  21. Carrión JS, Fernández S, González-Sampériz P et al (2010a) Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev Palaeobot Palynol 162:458–475CrossRefGoogle Scholar
  22. Carrión JS, Fernández S, Jiménez-Moreno G et al (2010b) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74:731–736. doi: 10.1016/j.jaridenv.2008.11.014 CrossRefGoogle Scholar
  23. Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965CrossRefGoogle Scholar
  24. Chapman R (1990) Emerging complexity: the later prehistory of south-east Spain, Iberia and the west Mediterranean. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. De Pedro MJ (2005) L´Edat del Bronze al nord del País Valencià: hàbitat i territori. Cypsela 15:103–122Google Scholar
  26. Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35:1,221–1,231CrossRefGoogle Scholar
  27. Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, New York, pp 47–70CrossRefGoogle Scholar
  28. Farquhar GD, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552Google Scholar
  29. Farquhar GD, O´Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  30. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  31. Ferrio Díaz JP, Araus JL, Buxó R, Voltas J, Bort J (2005) Water management practices and climate in ancient agriculture: inference from the stable isotope composition of archaeobotanical remains. Veget Hist Archaeobot 14:510–517CrossRefGoogle Scholar
  32. Ferrio Díaz JP, Alonso N, López JB, Araus JL, Voltas J (2006) Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Glob Change Biol 12:1,253–1,266CrossRefGoogle Scholar
  33. Finlayson B, Lovell J, Smith S (2011) The archaeology of water management in the Jordan Valley from the Epipalaeolithic to the Nabatean, 21,000 bp (19000 bc) to ad 106. In: Mithen S, Black E (eds) Water, life and civilisation. Climate, environment and society in the Jordan valley. Cambridge University Press, CambridgeGoogle Scholar
  34. Fiorentino G, Ferrio JP, Bogaard A, Araus JL, Riehl S (2015) Stable isotopes in archaeobotanical research. Veget Hist Archaeobot 24:215–227CrossRefGoogle Scholar
  35. Flohr P, Müldner G, Jenkins E (2011) Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: preliminary results. Water Hist 3:121–144CrossRefGoogle Scholar
  36. Forteza J, Rubio JC, Gimeno E (1995) El catálogo de suelos de la Comunitat Valenciana. Consellería de Agricultura, Pesca y Alimentación, ValenciaGoogle Scholar
  37. Friedli H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238. doi: 10.1038/324237a0 CrossRefGoogle Scholar
  38. Gillmore GK, Coningham RA, Fazeli H, Young RL, Magshoudi M, Batt CM, Rushworth G (2009) Irrigation on the Tehran plain, Iraq: Tepe Pardis, the site of a possible Neolithic irrigation feature? Catena 78:285–300CrossRefGoogle Scholar
  39. Gilman A, Thornes JB (1985) Land-use and prehistory in south-east Spain. George Allen & Unwin, LondonGoogle Scholar
  40. Gonzalez Samperiz P, Valero Garces B, Moreno A, Morellon M, Navas A (2008) Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: Saline lake records. Palaeogeogr Palaeoclimatol Palaeoecol 259:157–181CrossRefGoogle Scholar
  41. Gressler A, Brandes E, Buchmann N, Helle G, Rennenberg H, Barnard RL (2009) Tracing carbon and oxygen isotope signals from newly assimilated sugars in the leaves to the tree-ring archive. Plant Cell Environ 32:780–795CrossRefGoogle Scholar
  42. Hartman G, Danin A (2010) Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162:837–852CrossRefGoogle Scholar
  43. Heaton THE, Jones G, Halstead P, Tsipropoulus T (2009) Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. JAS 36:2,224–2,233Google Scholar
  44. Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663CrossRefGoogle Scholar
  45. Helbæk H (1960) Cereal weed grasses in Phase A. In: Braidwood RJ, Braiwood LS (eds) Excavations in the plain of Antioch I. University of Chicago Press, Chicago, pp 540–543Google Scholar
  46. Helms SW (1981) Jawa: lost city of the Black Desert. Methuen, LondonGoogle Scholar
  47. Hunt RC (1988) Managment in southern Mesopotamia in Sumerian times. In: Postgate JN, Powell MA (eds) Irrigation and cultivation in Mesopotamia. Sumerian Agriculture Group, Cambridge, pp 189–206Google Scholar
  48. Indermühle A, Stocker TF, Joos F et al (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antartica. Nature 398:121–126CrossRefGoogle Scholar
  49. Jacobsen T, Adams RM (1958) Salt and silt in ancient Mesopotamian agriculture. Science 128:1,251–1,258CrossRefGoogle Scholar
  50. Jenkins E, Jamjoum K, Nuimat S (2011) Irrigation and phytolith formation: an experimental study. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment and society in the Jordan Valley. Cambridge University Press, Cambridge, pp 347–372CrossRefGoogle Scholar
  51. Jones GEM, Charles M, Colledge S, Halstead P (1995) Towards the archaeological recognition of winter-cereal irrigation: an investigation of modern weed ecology in nothern Spain. In: Kroll H, Pasternak R (eds) Res Archaeobotanicae. Oetker-Voges-Verlag, Kiel, pp 49–68Google Scholar
  52. Jones GEM, Charles M, Bogaard A, Hodgson JG, Palmer C (2005) The functional ecology of present-day arable weed floras and its applicability for the identification of past crop husbandry. Veget Hist Archaeobot 14:493–504CrossRefGoogle Scholar
  53. Jover Maestre FJ (1999) Una nueva lectura del “Bronce Valenciano”. Universidad de Alicante, AlicanteGoogle Scholar
  54. Jover Maestre FJ, López Padilla JA, Machado Yanes MC et al (2001) La producción textil durante la Edad del Bronce: un conjunto de husos o bobinas de hilo del yacimiento de Terlinques (Villena, Alicante). Trab Prehist 58:171–186CrossRefGoogle Scholar
  55. Jover Maestre FJ, López Padilla JA, García-Donato G (2014) Radiocarbono y estadística bayesiana: aportaciones a la cronología de la Edad del Bronce en el extremo oriental del sudeste de la Península Ibérica. Sagvntvm 46:41–69. doi: 10.7203/SAGVNTVM.46.3479 Google Scholar
  56. Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123. doi: 10.1038/277121a0 CrossRefGoogle Scholar
  57. Klein T, Hemming D, Lin TB, Grünzweig JM, Maseyk K, Rotenberg E, Yakir D (2005) Association between tree-ring and needle δ 13C and leaf exchange in Pinus halepensis under semi-arid conditions. Oecologia 144:45–54CrossRefGoogle Scholar
  58. Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19,691–19,695CrossRefGoogle Scholar
  59. Kuijt I, Finlayson B, MacKay J (2007) Pottery neolithic landscape modification at Dhra´. Antiquity 81:106–118CrossRefGoogle Scholar
  60. Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antartic ice core. Nature 357:488–490CrossRefGoogle Scholar
  61. Machado MC, Jover Maestre FJ, López Padilla JA (2009) Antracología y paleoecología en el cuadrante suroriental de la Península Ibérica: las aportaciones del yacimiento de la Edad del Bronce de Terlinques (Villena, Alicante). Trab Prehist 66:75–97CrossRefGoogle Scholar
  62. Marino BD, DeNiro MJ (1987) Isotopic analysis of archaeobotanicals to reconstruct past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. JAS 14:537–548Google Scholar
  63. Martin Puertas C, Jimenez Espejo F, Martinez Ruiz F et al (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6:807–816CrossRefGoogle Scholar
  64. Masi A, Sadori L, Balossi R, Baneschi I, Zanchetta G (2014) Stable carbon analysis as a crop management indicator at Arslantepe (Malatya, Turkey) during the late Chalcolithic and early bronze age. Veget Hist Archaeobot 23:751–760CrossRefGoogle Scholar
  65. Matarredona E (1983) El Alto Vinalopó. Estudio geográfico. Instituto de Estudios Alicantinos, AlicanteGoogle Scholar
  66. McCarrol D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  67. Morellon M, Valero-Garces B, Vegas-Vilarrubia T et al (2009) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quat Sci Rev 28:2,582–2,599CrossRefGoogle Scholar
  68. Nitsch E, Charles M, Bogaard A (2015) Calculating a statistically robust d13C and d15 N offset for charred cereal and pulse seeds. Sci Technol Archaeol Res 1(1):1–14CrossRefGoogle Scholar
  69. Oleson JP (2001) Water supply in Jordan through the ages. In: McDonald B, Adams R, Bienkowski P (eds) The archaeology of Jordan. Sheffield University Press, Sheffield, pp 603–624Google Scholar
  70. Peterson BJ, Fry B (1987) Stable isotopes in ecosystems studies. Annu Rev Ecol Syst 18:293–320. doi: 10.1146/annurev.ecolsys.18.1.293 CrossRefGoogle Scholar
  71. Philip G (2008) The Early Bronze Age I-III. In: Adams R (ed) Jordan: an archaeological reader. Equinox, LondonGoogle Scholar
  72. Precioso Arévalo ML, Rivera D (1999) Estudio Paleoetnobotánico. In: Jover Maestre FJ, López Padilla JA (eds) II Campaña de excavaciones arqueológicas en Terlinques (Villena, Alicante). Memorias arqueológicas y paleontológicas de la Comunidad Valenciana, Nº 0. Conselleria de Cultura, Educación y Ciencia. Generalitat Valenciana, ValenciaGoogle Scholar
  73. Riehl S (2012) Variability in ancient Near Eastern environmental and agricultural development. J Arid Environ 86:113–121CrossRefGoogle Scholar
  74. Riehl S, Pustovoytov K, Weippert H, Klett S, Hole F (2014) Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proc Natl Acad Sci USA 111:12,348–12,353CrossRefGoogle Scholar
  75. Rosen AM, Weiner S (1994) Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. JAS 21:125–132Google Scholar
  76. Scarbourough VL (2003) The flow of power: ancient water systems and landscapes. SAR Press, Santa FeGoogle Scholar
  77. Shüle W (1967) Feldbewässerung in Alt-Europa. Madrider Mitteilungen 8:79–99Google Scholar
  78. Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1995) 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Aust J Plant Physiol 22:51–55CrossRefGoogle Scholar
  79. Stokes H, Müldner G, Jenkins E (2011) An investigation into the archaeological application of carbon stable isotope analysis used to establish crop water availability: solutions and ways forwards. In: Mithen S, Black E (eds) Water, life and civilisation: climate, environment, and society in the Jordan Valley. Cambridge University Press, Cambridge, pp 373–380CrossRefGoogle Scholar
  80. Tans PP, Mook WG (1980) Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. Tellus 32:268–283CrossRefGoogle Scholar
  81. Wallace M, Jones GEM, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A (2013) Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Arch 45:388–409. doi: 10.1080/00438243.2013.821671 CrossRefGoogle Scholar
  82. Wallace MP, Jones G, Charles M, Fraser R, Heaton THE, Bogaard A (2015) Stable carbon isotope evidence for Neolithic and Bronze Age crop water management in the eastern Mediterranean and southwest Asia. PLoS One 10:e0127085. doi: 10.1371/journal.pone.0127085 CrossRefGoogle Scholar
  83. Wittfogel KA (1957) Oriental despotism. A comparative study of total power. Yale University Press, New HavenGoogle Scholar
  84. Yanes Y, Romanek CS, Molina F, Cámara JA, Delgado A (2011) Holocene paleoenvironment (7,200–4,000 cal bp) of the Los Castillejos archaeological site (SE Spain) inferred from the stable isotopes of land snail shells. Quat Int 244:67–75. doi: 10.1016/j.quaint.2011.04.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adrián Mora-González
    • 1
    • 2
    Email author
  • Antonio Delgado-Huertas
    • 1
  • Arsenio Granados-Torres
    • 1
  • Francisco Contreras Cortés
    • 2
  • Francisco Javier Jover Maestre
    • 3
  • Juan Antonio López Padilla
    • 4
  1. 1.Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR)Armilla, GranadaSpain
  2. 2.Departamento de Prehistoria y ArqueologíaUniversidad de Granada, Facultad de Filosofía y LetrasGranadaSpain
  3. 3.Instituto Universitario de investigación en Arqueología y Patrimonio Histórico, INAPHUniversidad de AlicanteSan Vicente del Raspeig, AlicanteSpain
  4. 4.Museo Arqueológico Provincial de Alicante, MARQAlicanteSpain

Personalised recommendations