Vegetation History and Archaeobotany

, Volume 25, Issue 4, pp 387–403

Differentiating vegetation types from eastern South American ecosystems based on modern and subfossil pollen samples: evaluating modern analogues

  • Jackson Martins Rodrigues
  • Hermann Behling
  • Thomas Giesecke
Original Article

Abstract

In south and southeast Brazil land use caused profound changes in natural vegetation and consequently the value of the pollen composition in surface samples as modern analogues. In order to test the capability of modern pollen to represent the natural vegetation, three different time slices of pollen assemblages from 27 sites spread over southern and south-eastern Brazil and the Misiones Province in Argentina were collated. Pollen samples from the pre-colonization period, selected from the moment just before abrupt changes evidenced on pollen diagrams caused by the colonization process throughout the last 500 years, were assumed to represent the natural vegetation conditions once the climate remained stable within this period. Thus we used pre-colonization assemblages to compare with modern samples to explore to what extent surface pollen may be biased in representing the natural vegetation types. Furthermore, to compare man made vegetation change to climate driven vegetation change we also compared to these 20 out of 27 samples dated to 3,000 years bp. Guided by ordination and cluster analysis, but using abundance thresholds of indicator taxa we classified the pollen spectra of pre-colonization time into seven groups consistent with the main vegetation types in the area. Ordination analyses capture the differentiation between grassland and forested vegetation and between tropical and subtropical vegetation types. Comparing the pre-colonization with other time slices we observed that based on Poaceae abundance, 70 and 85 % respectively of sites from 3,000 bp and modern assemblages maintained their classification. Based on finer classification criteria these values decreased to 40 and 52 % respectively. Square chord dissimilarity indicates that colonization impact altered the pollen composition as strongly as 3,000 years of climate induced vegetation change. The surface samples still represent important environmental gradients; however, their use as modern analogue requires careful treatment and eventual exclusion of highly impacted sites.

Keywords

Brazilian ecosystems Vegetation changes Land use Multivariate analysis Pollen Surface samples 

References

  1. Adámoli J, Macêdo J, Azevedo LG, Netto JM (1987) Caracterização da região dos Cerrados. In: Goedert WJ (ed) Solos dos Cerrados: tecnologias e estratégias de manejo. Nobel, São Paulo, pp 33–98Google Scholar
  2. Anderson RS, Stillick RD (2013) 800 years of vegetation change, fire and human settlement in the Sierra Nevada of California, USA. Holocene 23:823–832CrossRefGoogle Scholar
  3. Bauermann SG, Macedo RB, Behling H, Pillar V, das Neves PCP (2008) Dinâmicas vegetacionais, climáticas e do fogo com base em palinologia e análise multivariada no quaternário tardio do sul do Brasil. Rev Bra Paleontol 11:87–96CrossRefGoogle Scholar
  4. Behling H (1995a) A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J Paleolimnol 14:253–268CrossRefGoogle Scholar
  5. Behling H (1995b) Investigations into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Veget Hist Archaeobot 4:127–152CrossRefGoogle Scholar
  6. Behling H (1997) Late quaternary vegetation, climate and fire history from the tropical mountains region of Morro de Itapeva, SE Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 129:407–422CrossRefGoogle Scholar
  7. Behling H (1998) Late quaternary vegetation and climatic changes in Brazil. Rev Palaeobot Palynol 99:143–156CrossRefGoogle Scholar
  8. Behling H (2002) Late Quaternary vegetation and climate dynamics in southeastern Amazonia inferred from Lagoa da Confusão in Tocantins State, northern Brazil. Amazoniana 17:27–39Google Scholar
  9. Behling H (2007) Late quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Veget Hist Archaeobot 16:77–85CrossRefGoogle Scholar
  10. Behling H, Safford HD (2010) Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos Mountains of Rio de Janeiro State, southeastern Brazil. Glob Chang Biol 16:1,661–1,671CrossRefGoogle Scholar
  11. Behling H, Negrelle RRB, Colinvaux PA (1997) Modern pollen rain data from the tropical Atlantic rain forest, Reserva Volta Velha, South Brazil. Rev Palaeobot Palynol 97:287–299CrossRefGoogle Scholar
  12. Behling H, Lichte M, Miklos AW (1998) Evidence of a forest free landscape under dry and cold climatic conditions during the last glacial maximum in the Botucatú region (São Paulo), Southeastern Brazil. Quat South Am Antarct Penins 11:99–110Google Scholar
  13. Behling H, Bauermann SG, das Neves PCP (2001) Holocene environmental changes in the São Francisco de Paula region southern Brazil. J S Am Earth Sci 14:631–639CrossRefGoogle Scholar
  14. Behling H, Pillar VD, Orlóci L, Bauermann SG (2004) Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 203:277–297CrossRefGoogle Scholar
  15. Behling H, Pillar V, Bauermann SG (2005) Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Rev Palaeobot Palynol 133:235–248CrossRefGoogle Scholar
  16. Behling H, Dupont L, Safford HD, Wefer G (2007a) Late quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quat Int 161:22–31CrossRefGoogle Scholar
  17. Behling H, Pillar VD, Müller S, Overbeck GE (2007b) Late-Holocene fire history in a forest-grassland mosaic in southern Brasil: implications for conservation. Appl Veget Sci 10:81–90CrossRefGoogle Scholar
  18. Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) statistical modelling of quaternary science data. Quaternary Research Association, Cambridge, pp 161–254Google Scholar
  19. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Arnold, LondonGoogle Scholar
  20. Birks HJB, Seppä H (2004) Pollen-based reconstructions of late-Quaternary climate in Europe—progress, problems, and pitfalls. Acta Palaeobot 44:317–334Google Scholar
  21. Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene—a synthesis. J Paleolimnol 23:91–114CrossRefGoogle Scholar
  22. Boldrini II (2009) A flora dos campos do rio grande do sul. In: Pillar V, Müller SC, Souza Castilhos de ZM, Jacques AVA (eds) Campos sulinos—conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente, Brasília, pp 63–78Google Scholar
  23. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  24. Brewer S, Guiot J, Barboni D (2007) Use of pollen as climate proxies. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier Science, Oxford, pp 2,497–2,508CrossRefGoogle Scholar
  25. Coelho MS, Carneiro MAA, Branco C, Borges RAX, Fernandes GW (2013) Gall-inducing insects from Campos de Altitude, Brazil. Biota Neotropica 13:139–151CrossRefGoogle Scholar
  26. Correa-Metrio A, Bush MB, Cabrera KR, Sully S, Brenner M, Hodell DA, Escobar J, Guilderson T (2012) Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quat Sci Rev 38:63–75CrossRefGoogle Scholar
  27. De Câmara IG (2003) Brief history of conservation in the Atlantic forest. In: Galindo-Leal C, Câmara IG (eds) The atlantic forest of south America, biodiversity status, threats, and outlook. IDM Composição e Arte, Washington, pp 31–42Google Scholar
  28. De Oliveira PE, Behling H, Ledru M-P et al (2005) Paleovegetação e paleoclimas do quaternário do Brasil. In: Souza CRG, Suguio K, Oliveira AMSP, Oliveira PE (eds) quaternário do Brasil. Holos Editora, Ribeirão Preto, pp 52–74Google Scholar
  29. Dean W (1995) With broadax and firebrand. The destruction of the Brazilian Atlantic forest. University of California Press, BerkeleyGoogle Scholar
  30. Denevan WM (1992) Stone vs metal axes: the ambiguity of shifting cultivation in prehistoric Amazonia. J Steward Anthropol Soc 20:153–165Google Scholar
  31. Dias AS, Neubauer F (2010) Um estudo contextual da organização tecnológica do sítio RS-C-61: adelair Pilger (Rio Grande do Sul, Brasil). Cazadores Recolectores del Cono Sur. Revista de Arqueol 4:187–206Google Scholar
  32. Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte verde: seaweed, food, medicine, and the peopling of south America. Science 320:784–786CrossRefGoogle Scholar
  33. Donders TH, Gorissen PM, Sangiorgi F, Cremer H, Wagner-Cremer F, McGee V (2008) Three-hundred-year hydrological changes in a subtropical estuary, Rookery Bay (Florida): human impact versus natural variability. Geochem Geophys Geosyst 9:1–15CrossRefGoogle Scholar
  34. Felde VA, Peglar SM, Bjune AE, Grytnes J-A, Birks HJB (2014) The relationship between vegetation composition, vegetation zones and modern pollen assemblages in Setesdal, southern Norway. Holocene 4:1–17Google Scholar
  35. Fonseca GAB, Rylands AB, Mittermeier RA (2004) Atlantic Forest. In: Robles RA, Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (eds) Hotspots revisted. Mexico City, pp 84–88Google Scholar
  36. Fundação SOS Mata Atlântica, Instituto Nacional de Pesquisas Espaciais (INPE) (2013) Atlas dos remanescentes florestais da Mata Atlântica período 2011–2012. http://www.sosma.org.br/link/atlas2011-12/atlas_2011-2012_relatorio_tecnico_2013final.pdf. Accessed 10 Mar 2014
  37. Gessert S, Iriarte J, Ríos RC, Behling H (2011) Late Holocene vegetation and environmental dynamics of the Araucaria forest region in Misiones Province, NE Argentina. Rev Palaeobot Palynol 166:29–37CrossRefGoogle Scholar
  38. Gosling WD, Mayle FE, Tate NJ, Killeen TJ (2009) Differentiation between Neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Rev Palaeobot Palynol 153:70–85CrossRefGoogle Scholar
  39. Hadler P, Dias AS, Bauermann SG (2013) Multidisciplinary studies of Southern Brazil Holocene: archaeological, palynological and paleontological data. Quat Int 305:119–126CrossRefGoogle Scholar
  40. Higuchi P, Da Silva AC, Ferreira TS, Souza ST, Gomes JP, Da Silva KM, Dos Santos KF (2012) Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Braz J Bot 35:145–157CrossRefGoogle Scholar
  41. Huber UM, Markgraf V (2003) European impact on fire regimes and vegetation dynamics at the steppe-forest ecotone of southern Patagonia. Holocene 13:567–579CrossRefGoogle Scholar
  42. Hueck K (1953) Distribuição e habitat natural do Pinheiro do Paraná. (Araucaria angustifolia). Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo. Botânica 10:1–24Google Scholar
  43. Hueck K (1966) Die wälder südamerikas. Fischer, StuttgartGoogle Scholar
  44. IBGE-Fundação Instituto Brasileiro de Geografia e Estatística (1995) Zoneamento ambiental e agroecológico do Estado de Goiás: região nordeste. Estudos e pesquisas em geociências 3. IBGE/Divisão de Geociências do Centro-Oeste, Rio de JaneiroGoogle Scholar
  45. IBGE-Fundação Instituto Brasileiro de Geografia e Estatística (2010) Censo Demográfico 2010. IBGE, BrasíliaGoogle Scholar
  46. Jackson DA (1995) PROTEST: a procrustean randomization test of community environment concordance. Ecoscience 2:297–303Google Scholar
  47. Jantz N, Homeier J, Behling H (2014) Representativeness of tree diversity in the modern pollen rain of Andean montane forests. J Veget Sci 25:481–490CrossRefGoogle Scholar
  48. Jeske-Pieruschka V, Behling H (2011) Palaeoenvironmental history of the São Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincão das Cabritas core. Holocene 22:1,251–1,262CrossRefGoogle Scholar
  49. Jeske-Pieruschka V, Fidelis A, Bergamin RS, Vélez E, Behling H (2010) Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollen data. Rev Palaeobot Palynol 160:53–65CrossRefGoogle Scholar
  50. Jeske-Pieruschka V, Pillar VD, De Oliveira MAT, Behling H (2012) New insights into vegetation, climate and fire history of southern Brazil revealed by a 40,000 year environmental record from the State Park Serra do Tabuleiro. Veget Hist Archaeobot 22:299–314CrossRefGoogle Scholar
  51. Jones HT, Mayle FE, Pennington RT, Killeen TJ (2011) Characterization of Bolivian savanna ecosystems by their modern pollen rain and implications for fossil pollen records. Rev Palaeobot Palynol 164:223–237CrossRefGoogle Scholar
  52. Legendre P, Birks HJB (2012) Clustering and partitioning. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments: data handling and numerical techniques. Springer, Dordrecht, pp 167–200CrossRefGoogle Scholar
  53. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  54. Longhi-Wagner HM (2012) Poaceae: an overview with reference to Brazil. Rodriguésia 63:89–100CrossRefGoogle Scholar
  55. Longhi-Wagner HM, Renvoize SA (2006) Poaceae. In: Barbosa MRV, Sothers C, Mayo S, Gamarra Rojas CFL, Mesquita AC (eds) Checklist das plantas do nordeste brasileiro. Brasília, pp 91–97Google Scholar
  56. Machado ABM, Drummond GM, Paglia AP (2008) Livro vermelho da fauna brasileira ameaçada de extinção. Ministério do Meio Ambiente–MMA, BrasíliaGoogle Scholar
  57. Marchant R, Behling H, Berrio JC et al (2002) Pollen-based biome reconstructions for Colombia at 3,000, 6,000, 9,000, 12,000, 15,000 and 18,000 14C year ago: late Quaternary tropical vegetation dynamics. J Quat Sci 17:113–129CrossRefGoogle Scholar
  58. Marchant R, Boom A, Behling H, Hooghiemstra H, Melief B, van Geel B, van der Hammen T, Wille M (2004) Colombian vegetation at the Last Glacial Maximum: a comparison of model- and pollen-based biome reconstructions. J Quat Sci 19:721–732CrossRefGoogle Scholar
  59. Marchant R, Harrison SP, Hooghiemstra H et al (2009) Pollen-based biome reconstructions for Latin America at 0, 6000 and 18,000 radiocarbon years. Clim Past 5:425–467CrossRefGoogle Scholar
  60. Morrone O, Zuloaga FO, Longhi-Wagner HM et al (2008) Poaceae. In: Zuloaga FO, Morrone O, Belgrano MJ, Smol JP (eds) Catálogo de las plantas vasculares del Cono Sur (Argentina, sur de Brasil, Chile, Paraguay y Uruguay). Springer, Saint Louis, pp 705–1,063Google Scholar
  61. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  62. Nimer E (1989) Climatologia do Brasil. Fundacão Instituto Brasileiro de Geografia e Estatística, Rio de JaneiroGoogle Scholar
  63. Oksanen J, Blanchet GF, Kindt R et al. (2013) Vegan: community ecology package. Verson 2.0-8. http://cran.r-project.org/web/packages/vegan/index.html
  64. Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in south-eastern Brazil, and the influence of climate. Biotropica 32:793–810CrossRefGoogle Scholar
  65. Oliveira-Filho AT, Ratter JA (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinb J Bot 52:141–194CrossRefGoogle Scholar
  66. Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 91–120Google Scholar
  67. Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves RM (2013) Delving into variation in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 2:1–23Google Scholar
  68. Overbeck GE, Muller SC, Fidelis A et al (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–116CrossRefGoogle Scholar
  69. Pereira LR, Cabette HSR, Juen L (2012) Trichoptera as bioindicators of habitat integrity in the Pindaíba river basin, Mato Grosso (Central Brazil). Ann Limnol 48:295–302CrossRefGoogle Scholar
  70. Prentice IC (1980) Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol 31:71–104CrossRefGoogle Scholar
  71. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biomemodel based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  72. Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194CrossRefGoogle Scholar
  73. Rambo B (1956a) A flora fanerogâmica dos Aparados riograndenses. Sellowia 7:235–298Google Scholar
  74. Rambo B (1956b) A fisionomia do rio grande do sul. Livraria Selbach, Porto AlegreGoogle Scholar
  75. Ratter JA, Bridgewater S, Atkinson R, Ribeiro JF (1996) Analysis of the floristic composition of the Brazilian cerrado vegetation II: comparison of the wood vegetation of 98 areas. Edinb J Bot 53:153–180CrossRefGoogle Scholar
  76. Ratter JA, Bridgewater S, Ribeiro F (2006) Biodiversity patterns of the woody vegetation of the Brazilian Cerrado. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and seasonally dry forests: plant diversity, biogeography and conservation. Taylor & Francis, London, pp 31–65Google Scholar
  77. RBMA–Reserva da Biosfera da Mata Atlântica (1999) Caderno n 15 Mata Atlântica: Ciência, conservação e políticas. Workshop científico, São PauloGoogle Scholar
  78. R Core Team (2012) R: A language and environment for statisti-cal computing. Vienna: R foundation for statistical computing. Available at: http://www.R-project.org/
  79. Rezende AV, Walter BMT, Fagg CW et al (2008) Flora vascular do bioma cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ecologia e flora. Embrapa, Brasília, pp 1,028–1,059Google Scholar
  80. Rodrigues-Filho S, Behling H, Irion G, Müller German (2002) Evidence for lake formation as a response to an inferred holocene climatic transition in Brazil. Quat Res 57:131–137CrossRefGoogle Scholar
  81. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65CrossRefGoogle Scholar
  82. Safford HD (1999) Brazilian páramos II. Macro- and mesoclimate of the campos de altitude and affinities with high mountain climates of the tropical Andes and Costa Rica. J Biogeogr 26:739–760CrossRefGoogle Scholar
  83. Sant’Anna Neto JL, Nery JT (2005) Variabilidade e mudanças climáticas no Brasil e seus impactos. In: Souza GRG, Suguio K, Oliveira MAS, Oliveira PL (eds) Quaternário do Brasil. Holos Editora, Ribeirão Preto, pp 28–50Google Scholar
  84. Schüler L, Behling H (2011) Poaceae pollen grain size as a tool to distinguish past grasslands in South America: a new methodological approach. Veget Hist Archeobot 20:83–96CrossRefGoogle Scholar
  85. Sëppa H, Birks HJB (2002) Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskaljavri. Quat Res 57:191–199CrossRefGoogle Scholar
  86. Simpson GL (2007) Analogue methods in palaeoecology: using the analogue package. J Stat Softw 22:1–29CrossRefGoogle Scholar
  87. Simpson GL, Birks HJB (2012) Statistical learning in palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments: data handling and numerical techniques. Springer, Dordrecht, pp 249–327CrossRefGoogle Scholar
  88. Simpson GL, Oksanen J (2014) Analogue: analogue matching and modern analogue technique transfer function models. (R package version 0.16-0). (http://cran.r-project.org/package=analogue)
  89. Tabarelli M, Aguiar AV, Ribeiro MC, Metzger JP, Peres CA (2010) Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol Conserv 143:2,328–2,340CrossRefGoogle Scholar
  90. Ter Braak CJF (1995) Ordination. In: Jogman RHG, Ter Braak CJF, Van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173CrossRefGoogle Scholar
  91. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  92. Veloso HP, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira adaptada a um sistema universal. IBGE, Departamento de Recursos Naturais e Estudos Ambientais, Rio de JaneiroGoogle Scholar
  93. Veríssimo N, Safford HD, Behling H (2012) Holocene vegetation and fire history of the Serra do Caparaó, SE Brazil. Holocene 23:1,243–1,250Google Scholar
  94. Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr (2011) Revisiting the Seasonally Dry Tropical Forests historical distribution: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288CrossRefGoogle Scholar
  95. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 2:583–591CrossRefGoogle Scholar
  96. Young CEF (2005) Causas socioeconômicas do desmatamento na Mata Atlântica brasileira. In: Galindo-Leal C, Câmara IG (eds) Mata Atlântica Biodiversidade, Ameaças e Perspectivas. Center for Applied Biodiversity Science at Conservation International, Washington, pp 103–118Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant SciencesGeorg-August-University of GöttingenGöttingenGermany

Personalised recommendations