Vegetation History and Archaeobotany

, Volume 25, Issue 3, pp 271–289 | Cite as

Vegetation and fire history of coastal north-eastern Sardinia (Italy) under changing Holocene climates and land use

  • Giorgia BeffaEmail author
  • Tiziana Pedrotta
  • Daniele Colombaroli
  • Paul D. Henne
  • Jacqueline F. N. van Leeuwen
  • Pascal Süsstrunk
  • Petra Kaltenrieder
  • Carole Adolf
  • Hendrik Vogel
  • Salvatore Pasta
  • Flavio S. Anselmetti
  • Erika Gobet
  • Willy Tinner
Original Article


Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.


Mediterranean Erica scoparia and E. arborea Quercus ilex forests Pollen Macrofossils Charcoal 



We thank Willi Tanner for the field work, Massimo D’Angelo for helping with coring permits, Florencia Oberli for the laboratory instructions, Kathrin Studer for her help with the determination of morphological differences between Erica scoparia and E. arborea macrofossils, Andy Lotter for inspirational discussions and two anonymous reviewers for their very valuable suggestions. This study was supported by the Swiss National Science Foundation (SNF 200021_134616/1).

Supplementary material

334_2015_548_MOESM1_ESM.doc (172 kb)
Supplementary material 1 (DOC 172 kb)


  1. Andersen C, Koç N, Jennings A, Andrews JT (2004) Nonuniform response of the major surface currents in the Nordic Seas to insolation forcing: implications for the Holocene climate variability. Paleoceanography 19:PA2003CrossRefGoogle Scholar
  2. Andrič M (2007) Holocene vegetation development in Bela krajina (Slovenia) and the impact of first farmers on the landscape. Holocene 17:763–776CrossRefGoogle Scholar
  3. Arévalo JR, Fernández-Palacios JM (2003) Spatial patterns of trees and juveniles in a laurel forest of Tenerife, Canary Islands. Plant Ecol 165:1–10CrossRefGoogle Scholar
  4. Arévalo JR, Fernández-Palacios JM, Palmer MW (1999) Tree regeneration and future dynamics of the laurel forest on Tenerife, Canary Islands. J Veg Sci 10:861–868CrossRefGoogle Scholar
  5. Ariztegui D, Asioli A, Lowe JJ et al (2000) Palaeoclimate and the formation of sapropel S1: inferences from Late Quaternary lacustrine and marine sequences in the central Mediterranean region. Palaeogeogr Palaeoclimatol Palaeoecol 158:215–240CrossRefGoogle Scholar
  6. Arrigoni PV (2006–2010) Flora dell’isola di Sardegna, vols 1–3. Carlo Delfino Editore, SassariGoogle Scholar
  7. Arrigoni PV, Camarda L, Corrias B, Diana S, Raffaelli M, Valsecchi F (1977–1991) Le piante endemiche della Sardegna 1-202. Boll Soc Sarda Sci Nat:16–28Google Scholar
  8. Azevedo JC, Possacos A, Aguiar CF et al (2013) The role of holm oak edges in the control of disturbance and conservation of plant diversity in fire-prone landscapes. For Ecol Manag 297:37–48CrossRefGoogle Scholar
  9. Bacchetta G, Iiriti G, Pontecorvo C (2005) Contributo alla conoscenza della flora vascolare endemica della Sardegna. Inf Bot Italiano 37(1, parte A):306–307Google Scholar
  10. Bacchetta G, Bagella S, Biondi E, Farris E, Filigheddu RS, Mossa L (2009) Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia 46(Suppl. 1):82Google Scholar
  11. Bacchetta G, Fenu G, Mattana E (2012) A checklist of the exclusive vascular flora of Sardinia with priority rankings for conservation. Anales del Jardín Botánico de Madrid 69:81–89CrossRefGoogle Scholar
  12. Bagella S, Caria MC, Farris E, Filigheddu R (2009) Spatial-time variability and conservation relevance of plant communities in Mediterranean temporary wet habitats: A case study in Sardinia (Italy). Plant Biosyst 143(3):435–442Google Scholar
  13. Bagliani P, Costa M, Demuro P, Sechi P (2006) Sito di Importanza Comunitaria proposto (pSIC) Berchida e Bidderosa - Piano di gestione. CRITERIA (Città, RIcerche, TERritorio, Innovazione, Ambiente) s.r.l., CagliariGoogle Scholar
  14. Barke J, Abels HA, Sangiorgi F et al (2011) Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39:427–430CrossRefGoogle Scholar
  15. Baroni C, Zanchetta G, Fallick AE, Longinelli A (2006) Mollusca stable isotope record of a core from Lake Frassino, northern Italy: hydrological and climatic changes during the last 14 ka. Holocene 16:827–837CrossRefGoogle Scholar
  16. Ben Tiba B, Reille M (1982) Recherches pollenanalytiques dans les montagnes de Kroumirie (Tunisie septentrionale): premiers résultats. Ecol Mediterr 8:75–86Google Scholar
  17. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  18. Benslama M, Andrieu-Ponel V, Guiter F, Reille M, de Beaulieu JL, Migliore J, Djamali M (2010) Nouvelles contributions à l’histoire tardiglaciaire et holocène de la végétation en Algérie: analyses polliniques de deux profils sédimentaires du complexe humide d’El-Kala. Comptes Rendus Biologies 333:744–754CrossRefGoogle Scholar
  19. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368CrossRefGoogle Scholar
  20. Bertolani Marchetti D, Accorsi CA, Arobba D et al (1984) Geobotanical researches on «Madonie» mountains. Webbia 38:329–348CrossRefGoogle Scholar
  21. Beug H (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  22. Birks HJB, Gordon A (1985) Numerical methods in quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  23. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from quaternary pollen-analytical data. Holocene 2:1–10CrossRefGoogle Scholar
  24. Bisculm M, Colombaroli D, Vescovi E et al (2012) Holocene vegetation and fire dynamics in the supra-mediterranean belt of the Nebrodi Mountains (Sicily, Italy). J Quat Sci 27:687–698CrossRefGoogle Scholar
  25. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  26. Brullo S, Di Martino A, Marcenò C (1977) La vegetazione di Pantelleria (Studio fitosociologico). Pubbl Ist Bot Univ Catania, Catania, 110 ppGoogle Scholar
  27. Calò C, Henne PD, Curry B et al (2012) Spatio-temporal patterns of Holocene environmental change in southern Sicily. Palaeogeogr Palaeoclimatol Palaeoecol 323–325:110–122CrossRefGoogle Scholar
  28. Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland. Groningen archaeological studies 4. Barkhuis Publishing, GroningenGoogle Scholar
  29. Carrión JS, Fuentes N, González-Sampériz P et al (2007) Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quat Sci Rev 26:1,455–1,475CrossRefGoogle Scholar
  30. Carrión JS, Fernández S, González-Sampériz P et al (2010) Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev Palaeobot Palynol 162:458–475CrossRefGoogle Scholar
  31. Chiappini M (1985) Guida alla flora pratica della Sardegna. Carlo Delfino Editore, SassariGoogle Scholar
  32. Colombaroli D, Tinner W (2013) Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. Holocene 23:1,625–1,634CrossRefGoogle Scholar
  33. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95:755–770CrossRefGoogle Scholar
  34. Colombaroli D, Vannière B, Emmanuel C, Magny M, Tinner W (2008) Fire—vegetation interactions during the Mesolithic—Neolithic transition at Lago dell’Accesa, Tuscany, Italy. Holocene 18:679–692CrossRefGoogle Scholar
  35. Colombaroli D, Tinner W, van Leeuwen J et al (2009) Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the peri-Adriatic region. J Biogeogr 36:314–326CrossRefGoogle Scholar
  36. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28:555–576CrossRefGoogle Scholar
  37. Conti E, Abbate G, Alessandrini A, Blasi C (eds) (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, RomaGoogle Scholar
  38. Curt T, Schaffhauser A, Borgniet L et al (2011) Litter flammability in oak woodlands and shrublands of southeastern France. For Ecol Manag 261:2,214–2,222CrossRefGoogle Scholar
  39. Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50CrossRefGoogle Scholar
  40. Davison W (1993) Iron and manganese in lakes. Earth-Sci Rev 34:119–163CrossRefGoogle Scholar
  41. Delzon S, Urli M, Samalens J-C et al (2013) Field evidence of colonisation by Holm Oak, at the northern margin of its distribution range, during the Anthropocene period. PLoS ONE 8:e80443CrossRefGoogle Scholar
  42. Dettori S, Filigheddu MR, Gutierrez M (2001) La Coltivazione della Quercia da Sughero. POM B28 “Nuove metodologie per la gestione sostenibile dei sistemi forestali complessi nell’Italia meridionale”. Accademia Italiana di Scienze Forestali, FirenzeGoogle Scholar
  43. Development Core Team R (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, WienGoogle Scholar
  44. Di Rita F, Melis RT (2013) The cultural landscape near the ancient city of Tharros (central West Sardinia): vegetation changes and human impact. J Archaeol Sci 40:4,271–4,282CrossRefGoogle Scholar
  45. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930CrossRefGoogle Scholar
  46. Djamali M, Gambin B, Marriner N et al (2013) Vegetation dynamics during the early to mid-Holocene transition in NW Malta, human impact versus climatic forcing. Veget Hist Archaebot 22:367–380CrossRefGoogle Scholar
  47. EAF (1998) Ente Autonomo del Flumendosa. Nuovo studio dell’idrologia superficiale della Sardegna. Regione Autonoma della Sardegna, Assessorato della Programmazione, Bilancio ed Assetto del Territorio, Centro Regionale di Programmazione, Cagliari.
  48. Ellenberg H (2009) Vegetation ecology of central Europe. Cambridge University Press, CambridgeGoogle Scholar
  49. Etienne D, Jouffroy-Bapicot I (2014) Optimal counting limit for fungal spore abundance estimation using Sporormiella as a case study. Veget Hist Archaeobot 23:743–749CrossRefGoogle Scholar
  50. Fernandes PM, Catchpole WR, Rego FC (2000) Shrubland fire behaviour modelling with microplot data. Can J For Res 30:889–899CrossRefGoogle Scholar
  51. Finsinger W, Tinner W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297CrossRefGoogle Scholar
  52. Giraudi C, Magny M, Zanchetta G, Drysdale RN (2011) The Holocene climatic evolution of Mediterranean Italy: a review of the continental geological data. Holocene 21:105–115CrossRefGoogle Scholar
  53. Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I et al (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1,683–1,699CrossRefGoogle Scholar
  54. Haberzettl T, Corbella H, Fey M et al (2007) Lateglacial and Holocene wet—dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 17:297–310CrossRefGoogle Scholar
  55. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308CrossRefGoogle Scholar
  56. Henne PD, Elkin C, Franke J et al (2015) Reviving extinct Mediterranean forests increases ecosystem potential in a warmer future. Front Ecol Environ 13:356–362CrossRefGoogle Scholar
  57. Holzhauser H, Magny M, Zumbuühl HJ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene 15:789–801CrossRefGoogle Scholar
  58. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  59. Jahns S, van den Bogaard C (1998) New palynological and tephrostratigraphical investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia. Veget Hist Archaebot 7:219–234CrossRefGoogle Scholar
  60. Jalut G, Esteban Amat A, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeogr Palaeoclimatol Palaeoecol 160:255–290CrossRefGoogle Scholar
  61. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200:4–18CrossRefGoogle Scholar
  62. Jörin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctuations in the Swiss Alps during the Holocene. Holocene 16:697–704CrossRefGoogle Scholar
  63. Keeley JE, Brennan TJ (2012) Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1,043–1,052CrossRefGoogle Scholar
  64. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems. Ecology, evolution and management. Cambridge University Press, CambridgeGoogle Scholar
  65. Kriek T (2014) Elenco dei nuraghi. Accessed 22 Jul 2014
  66. Lambeck K, Antonioli F, Purcell A, Silenzi S (2004) Sea-level change along the Italian coast for the past 10,000 years. Quat Sci Rev 23:1,567–1,598CrossRefGoogle Scholar
  67. Lang G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Gustav Fischer, JenaGoogle Scholar
  68. Lardicci C, Abbiati M, Crema R, Morri C, Bianchi CN, Castelli A (1993) The distribution of polychaetes along environmental gradients: an example from the Ortobello Lagoon, Italy. Mar Ecol 14:35–52CrossRefGoogle Scholar
  69. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  70. Leys B, Finsinger W, Carcaillet C (2014) Historical range of fire frequency is not the Achilles’ heel of the Corsican black pine ecosystem. J Ecol 102:381–395CrossRefGoogle Scholar
  71. Lilliu G (2002) La civiltà preistorica e nuragica in Sardegna. Accademia Nazionale dei Lincei, RomaGoogle Scholar
  72. Lloret F, Siscart D, Dalmases C (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Change Biol 10:2,092–2,099CrossRefGoogle Scholar
  73. Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freeze- and summer drought-induced xylem embolism: an ecological interpretation. Plant Cell Environ 16:511–519CrossRefGoogle Scholar
  74. Magny M, Leuzinger U, Bortenschlager S, Haas JN (2006) Tripartite climate reversal in Central Europe 5600–5300 years ago. Quat Res 65:3–19CrossRefGoogle Scholar
  75. Magny M, De Beaulieu J-L, Drescher-Schneider R et al (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26:1,736–1,758CrossRefGoogle Scholar
  76. Magny M, Vannière B, Calò C et al (2011) Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quat Sci Rev 30:2,459–2,475CrossRefGoogle Scholar
  77. Magny M, Joannin S, Galop D et al (2012) Holocene palaeohydrological changes in the northern Mediterranean borderlands as reflected by the lake-level record of Lake Ledro, northeastern Italy. Quat Res 77:382–396CrossRefGoogle Scholar
  78. Martin-Puertas C, Matthes K, Brauer A et al (2012) Regional atmospheric circulation shifts induced by a grand solar minimum. Nat Geosci 5:397–401CrossRefGoogle Scholar
  79. Mastino A (1995) La Produzione ed il commercio dell’olio nella Sardegna antica. In: Atzori M, Vodret A (eds) Olio sacro e profano: tradizioni olearie in Sardegna e Corsica. EDES Editrice Democratica Sarda, Sassari, pp 60–76Google Scholar
  80. Mateus JE (1989) Pollen morphological of Portuguese Ericales. Rev Biol 14:135–208Google Scholar
  81. Mercuri AM, Sadori L (2014) 30. Mediterranean culture and climatic change: past patterns and future trends. In: Goffredo S, Dubinsky Z (eds) The Mediterranean sea: its history and present challenges. Springer, Dordrecht, pp 507–527CrossRefGoogle Scholar
  82. Mercuri AM, Mazzanti M, Torri P et al (2012) A marine/terrestrial integration for mid-late Holocene vegetation history and the development of the cultural landscape in the Po Valley as a result of human impact and climate change. Veget Hist Archaeobot 21:353–372CrossRefGoogle Scholar
  83. Mongelli G, Monni S, Oggiano G, Paternoster M, Sinisi R (2013) Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy. Hydrol Earth Syst Sci 17:2,917–2,928CrossRefGoogle Scholar
  84. Moore P, Webb J, Collison M (1991) Pollen analysis. Blackwell Scientific Publications, OxfordGoogle Scholar
  85. Nijland W, Jansma E, Addink EA, Domínguez-Delmás M, De Jong SM (2011) Relating ring width of Mediterranean evergreen species to seasonal and annual variations of precipitation and temperature. Biogeosciences 8:1,141–1,152CrossRefGoogle Scholar
  86. Nogués I, Llusià J, Ogaya R, Munné-Bosch S, Sardans J, Peñuelas J, Loreto F (2014) Physiological and antioxidant responses of Quercus ilex to drought in two different seasons. Plant Biosyst 148:268–278CrossRefGoogle Scholar
  87. Noti R, Van Leeuwen JFN, Colombaroli D, Vescovi E, Pasta S, La Mantia T, Tinner W (2009) Mid- and late-Holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, Italy. Veget Hist Archaeobot 18:371–387CrossRefGoogle Scholar
  88. Ojeda F, Arroyo J, Marañón T (2000) Ecological distribution of four co-occurring Mediterranean heath species. Ecography 23:148–159CrossRefGoogle Scholar
  89. Pantaléon-Cano J, Yll E, Pérez-Obiol R, Roure JM (2003) Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). Holocene 13:109–119CrossRefGoogle Scholar
  90. Pausas JG, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin?—A review. Int J Wildland Fire 7:713–723CrossRefGoogle Scholar
  91. Pérez-Obiol R, Sadori L (2007) Similarities and dissimilarities, synchronisms and diachronisms in the Holocene vegetation history of the Balearic Islands and Sicily. Veget Hist Archaeobot 16:259–265CrossRefGoogle Scholar
  92. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1,947–1,951CrossRefGoogle Scholar
  93. Pignatti S (2003) Flora d’Italia, vol. 3 terzo. Edagricole, BolognaGoogle Scholar
  94. Pignatti S (2005) Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39:3–97Google Scholar
  95. Ramil Rego P, Aira Rodriguez MJ, Saa Otero P (1992) Clave polinica de las Ericaceae gallegas. Lazaroa 13:33–40Google Scholar
  96. Reille M (1992a) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  97. Reille M (1992b) New pollen-analytical researches in Corsica: the problem of Quercus ilex L. and Erica arborea L., the origin of Pinus halepensis Miller forests. New Phytol 122:359–378CrossRefGoogle Scholar
  98. Reille M, Gamisans J, Andrieu-Ponel V, De Beaulieu J-L (1999) The Holocene at Lac de Creno, Corsica, France: a key site for the whole island. New Phytol 141:291–307CrossRefGoogle Scholar
  99. Roberts N, Brayshaw D, Kuzucuoğlu C, Perez R, Sadori L (2011) The mid-Holocene climatic transition in the Mediterranean: causes and consequences. Holocene 21:3–13CrossRefGoogle Scholar
  100. Sadori L, Narcisi B (2001) The Postglacial record of environmental history from Lago di Pergusa, Sicily. Holocene 11:655–671CrossRefGoogle Scholar
  101. Sadori L, Zanchetta G, Giardini M (2008) Last glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, Southern Italy) as inferred by pollen, microcharcoal, and stable isotopes. Quat Int 181:4–14CrossRefGoogle Scholar
  102. Sadori L, Ortu E, Peyron O, Zanchetta G, Vannière B, Desmet M, Magny M (2013) The last 7 millennia of vegetation and climate changes at Lago di Pergusa (central Sicily, Italy). Clim Past 9:1,969–1,984CrossRefGoogle Scholar
  103. Sardegnageoportale (2014) Geografia della Sardegna. Accessed 10 Jul 2014
  104. Stevenson AC, Phethean SJ, Robinson JE (1993) The palaeosalinity and vegetational history of Garaet el Ichkeul, northwest Tunisia. Holocene 3:201–210CrossRefGoogle Scholar
  105. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  106. Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res Classic Pap 18:271–313CrossRefGoogle Scholar
  107. Ter Braak CJF, Šmilauer P (2002) CANOCO. Software for Canonical Community Ordination. Microcomputer Power, Ithaca, NYGoogle Scholar
  108. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505CrossRefGoogle Scholar
  109. Tinner W, Conedera M, Ammann B, Gaggeler HW, Gedye S, Jones R, Sagesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. Holocene 8:31–42CrossRefGoogle Scholar
  110. Tinner W, van Leeuwen JFN, Colombaroli D et al (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28:1,498–1,510CrossRefGoogle Scholar
  111. Tinner W, Colombaroli D, Heiri O et al (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439CrossRefGoogle Scholar
  112. Turner R, Roberts N, Eastwood WJ, Jenkins E, Rosen A (2010) Fire, climate and the origins of agriculture: micro-charcoal records of biomass burning during the last glacial–interglacial transition in Southwest Asia. J Quat Sci 25:371–386CrossRefGoogle Scholar
  113. Vannière B, Power MJ, Roberts N et al (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal bp). Holocene 21:53–73CrossRefGoogle Scholar
  114. Ziegler M, Jilbert T, De Lange GJ, Lourens LJ, Reichart G (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosyst 9:Q05009CrossRefGoogle Scholar
  115. Zunzunegui M, Díaz Barradas MC, García Novo F (1998) Vegetation fluctuation in Mediterranean dune ponds in relation to rainfall variation and water extraction. Appl Veg Sci 1:151–160CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giorgia Beffa
    • 1
    • 2
    Email author
  • Tiziana Pedrotta
    • 1
    • 2
  • Daniele Colombaroli
    • 1
    • 2
  • Paul D. Henne
    • 1
    • 2
  • Jacqueline F. N. van Leeuwen
    • 1
    • 2
  • Pascal Süsstrunk
    • 1
    • 2
  • Petra Kaltenrieder
    • 1
    • 2
  • Carole Adolf
    • 1
    • 2
  • Hendrik Vogel
    • 2
    • 3
  • Salvatore Pasta
    • 4
  • Flavio S. Anselmetti
    • 2
    • 3
  • Erika Gobet
    • 1
    • 2
  • Willy Tinner
    • 1
    • 2
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  3. 3.Institute of Geological SciencesUniversity of BernBernSwitzerland
  4. 4.Institute of Biosciences and BioResources (IBBR), Division of PalermoNational Research Council (CNR)Palermo (PA)Italy

Personalised recommendations