Vegetation History and Archaeobotany

, Volume 25, Issue 3, pp 255–269 | Cite as

Olive cultivation in the heart of the Persian Achaemenid Empire: new insights into agricultural practices and environmental changes reflected in a late Holocene pollen record from Lake Parishan, SW Iran

  • Morteza DjamaliEmail author
  • Matthew D. Jones
  • Jérémy Migliore
  • Silvia Balatti
  • Marianela Fader
  • Daniel Contreras
  • Sébastien Gondet
  • Zahra Hosseini
  • Hamid Lahijani
  • Abdolmajid Naderi
  • Lyudmila S. Shumilovskikh
  • Margareta Tengberg
  • Lloyd Weeks
Original Article


Ancient Persia witnessed one of its most prosperous cultural and socio-economic periods between 550 bc and ad 651, with the successive domination of the Achaemenid, Seleucid, Parthian and Sassanian Empires. During this period agricultural activities increased on the Iranian plateau, as demonstrated by a remarkable arboricultural expansion. However, available data are not very informative about the spatial organization of agricultural practices. The possible links between climate conditions and agricultural activities during this millennium of continuous imperial domination are also unclear, due to the lack of parallel human-independent palaeoclimatic proxies. This study presents a new late Holocene pollen-based vegetation record from Lake Parishan, SW Iran. This record provides invaluable information regarding anthropogenic activities before, during and after the empires and sheds light on (i) spatial patterning in agricultural activities and (ii) possible climate impacts on agro-sylvo-pastoral practices during this period. Results of this study indicate that arboriculture was the most prominent form of agricultural activity in SW Iran especially during the Achaemenid, Seleucid and Parthian periods. Contrary to the information provided by some Greco-Roman written sources, the record from Lake Parishan shows that olive cultivation was practiced during Achaemenid and Seleucid times, when olive cultivation was significant, at least in this basin located close to the capital area of the Achaemenid Empire. In addition, pollen from aquatic vegetation suggests that the period of the latter centuries of the first millennium bc was characterized by a higher lake level, which might have favoured cultural and socio-economic prosperity.


Tree cultivation Dodonaea Socio-economic changes Climate change Zagros Middle East 



This study was supported by the Mamasani Archaeological Project; a Australian-British-Iranian Archaeological cooperation directed by Dan Potts, Cameron Petrie, LW and the Iranian Centre for Archaeological Research. It was also partly supported by the European ERC project (Grant No. 295375) entitled: “PERSIA: Persia and its neighbours: the Archaeology of Late Antique Imperial Power in Iran”. The contributions of M. Fader and D. Contreras were supported by the Labex OT-Med (no ANR-11-LABX-0061) and the A*MIDEX project (no ANR-11-IDEX-0001-02). The first author wishes to thank Guillaume Buchet for his availability, patience and invaluable help during the pollen identifications done in CEREGE palynology laboratory. MJ and LW thank their collaborators in retrieving the core material, in particular Hajar Askari, Alireza Askari, Alireza Sardori, Arash Lashkari and Kourosh Alamdari.


  1. Amiri M, Genito B (2013) Bīšāpūr and its territory (Fars, Iran). Newsletter di Archeologia CISA 4:1–45Google Scholar
  2. Arrian L (1983) Anabasis of Alexander, vol 2, books 5–7, Indica. Loeb Classical Library 269 (P.A. Brunt, Trans.). Harvard University Press, LondonGoogle Scholar
  3. Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, Baali-Cherif D, Brunini-Bronzini de Caraffa V, Santoni S, Vargas P, Savolainen V (2013) The complex history of the olive tree: from late quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B 280:20122833CrossRefGoogle Scholar
  4. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Bondeau A, Smith P, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:1–28CrossRefGoogle Scholar
  6. Bonnefille R, Riollet G (1980) Pollen des savanes d’Afrique Orientale. CNRS Editions, ParisGoogle Scholar
  7. Bottema S, Woldring H (1990) Anthropogenic indicators in the pollen diagrams of the Eastern Mediterranean. In: Bottema S, Entjes-Nieborg G, van Zeist W (eds) Man’s role in the shaping of the Eastern Mediterranean landscape. Balkema, Rotterdam, pp 231–264Google Scholar
  8. Christensen P (1993) The decline of Iranshahr—irrigation and environments in the History of the Middle East 500 bc to ad 1500, Museum Tusculanum Press, University of Copenhagen, CopenhagenGoogle Scholar
  9. Djamali M, Kürschner H, Akhani H, De Beaulieu J-L, Amini A, Andrieu-Ponel V, Ponel P, Stevens L (2008) Palaeoecological significance of the spores of the liverwort Riella (Riellaceae) in a late Pleistocene long pollen record from the hypersaline Lake Urmia, NW Iran. Rev Palaeobot Palynol 152:66–73CrossRefGoogle Scholar
  10. Djamali M, De Beaulieu J-L, Miller NF, Andrieu-Ponel V, Lak R, Sadeddin M, Akhani H, Fazeli H (2009a) Vegetation history of the SE section of Zagros Mountains during the last five millennia; a pollen record from the Maharlou Lake, Fars Province, Iran. Veget Hist Archaeobot 18:123–136CrossRefGoogle Scholar
  11. Djamali M, De Beaulieu JL, Miller N, Andrieu-Ponel V, Berberian M, Gandouin E, Lahijani H, Ponel P, Salimian M, Guiter F (2009b) A late Holocene pollen record from Lake Almalou in NW Iran: evidence for changing land-use in relation to some historical events during the last 3700 years. J Archaeol Sci 36:1,346–1,375CrossRefGoogle Scholar
  12. Djamali M, Miller NF, Ramezani E, Akhani H, Andrieu-Ponel V, De Beaulieu J-L, Berberian M, Guibal F, Lahijani H, Lak R, Ponel P (2011) Notes on the arboricultural and agricultural practices in ancient Iran based on new pollen evidence. Paléorient 36:175–188CrossRefGoogle Scholar
  13. Djamali M, Gambin B, Marriner N, Andrieu-Ponel V, Gambin T, Gandouin E, Médail F, Pavon D, Ponel P, Morhange C (2012) Vegetation dynamics during the early to mid-Holocene transition in NW Malta, human impact versus climatic forcing. Veget Hist Archaeobot 22:367–380CrossRefGoogle Scholar
  14. Dolatkhahi M, Yousofi M, Asri Y (2009) Floristic studies of Parishan Wetland and its surroundings in Fars province. Iran J Biol 1:35–46Google Scholar
  15. Eastwood WJ, Roberts N, Lamb HF (1998) Palaeoecological and archaeological evidence for human occupance in southwest Turkey: the Beyşehir occupation phase. Anatol Stud 48:69–86CrossRefGoogle Scholar
  16. Fader M, Von Bloh W, Shi S, Bondeau A, Cramer W (2015) Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci Model Dev Discuss 8:4,997–5,040. doi: 10.5194/gmdd-8-4997-2015 CrossRefGoogle Scholar
  17. Florenzano A (2013) Evoluzione di un paesaggio mediterraneo nella ricostruzione archeoambientale di siti lucani: evolution of a Mediterranean landscape as shown by the archaeo-environmental reconstruction of Lucanian sites. PhD Dessertation, Università degli Studi di Modena e Reggio Emilia, ModenaGoogle Scholar
  18. Frahm J-P (2001) Biologie der Moose. Spektrum, HeidelbergGoogle Scholar
  19. Frey W, Kürschner H (1989) Die Vegetation im Vorderen Orient: Erläuterungen zur Karte A VI 1: Vorderer Orient. Vegetation des Tübinger Atlas des Vorderen Orients Reihe A. Ludwig Reichert, WiesbadenGoogle Scholar
  20. Ghazanfar SA (2007) Flora of the Sultanate of Oman, vol. 2: Crassulaceae—Apiaceae. Meise National Botanical Garden (Belgium), MeiseGoogle Scholar
  21. Ghazanfar SA, Fishers M (1998) Vegetation of the Arabian Peninsula. Geobotany 25. Kluwer, DordrechtCrossRefGoogle Scholar
  22. Ghirshman R, Ghirshman T, Haeny G, Hardy AP, Jacquet J, Walker Ghirshman J (1956) Fouilles de Châpour, Bîchâpour: vol. II: Les mosaïques Sassanides. Étude Numismatique par John Walker. Librairie Orientaliste Paul Geuthner, ParisGoogle Scholar
  23. Ghirshman R, Ghirshman T, Hardy AP (1971) Fouilles de Châpour, Bîchâpour: vol I. Librairie orientaliste Paul Geuthner, ParisGoogle Scholar
  24. Grimm EC (2004, 2005) TILIA and TGView software. Ver 2.0.2. Illinois State University, SpringfieldGoogle Scholar
  25. Haas JN (1996) Neorhabdocoela oocytes—palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Rev Palaeobot Palynol 91:371–382CrossRefGoogle Scholar
  26. Hallock RT (1978) Selected Fortification Texts. Cahiers de la Délégation Archéologique Française en Iran 8:109–136Google Scholar
  27. Hardion L, Verlaque R, Saltonstall K, Leriche A, Vila B (2014) Origin of the invasive Arundo donax (Poaceae): a trans-Asian expedition in herbaria. Ann Bot 114:455–462CrossRefGoogle Scholar
  28. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  29. Hejabri Nobari A, Khatib Shahidi H, Rezaei MH (2009) Systematic Survey of Tale Jeidun in Kazeroun. Antiquity 83. Available at
  30. Hinz W, Koch H (1987) Elamisches Wörterbuch II. Archäologische Mitteilungen aus Iran, Ergänzungsband 17. Reimer, BerlinGoogle Scholar
  31. Jones M, Djamali M, Holmes J, Weeks L, Leng M, Lashkari A, Alamdari K, Noorollahi D, Thomas L, Metcalfe SE (2015) Human impact on the hydroenvironment of Lake Parishan, SW Iran, through the late Holocene. Holocene (in press)Google Scholar
  32. Le Strange G (1905) The land of the Eastern Caliphates, Cambridge geographical series. The University Presse, CambridgeGoogle Scholar
  33. Manafzadeh S, Salvo G, Conti E (2013) A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes. J Biogeogr 41:366–379CrossRefGoogle Scholar
  34. Mercuri AM, Bandini Mazzanti M, Florenzano A, Montecchi MC, Rattighieri E (2013) Olea, Juglans and Castanea: the OJC group as pollen evidence of the development of human-induced environments in the Italian peninsula. Quat Int 303:24–42CrossRefGoogle Scholar
  35. Miehe G, Miehe S, Schlütz F, Kaiser K, Duo L (2006) Palaeoecological and experimental evidence of former forests and woodlands in the treeless desert pastures of Southern Tibet (Lhasa, A.R. Xizang, China). Palaeogeogr Palaeoclimatol Palaeoecol 242:54–67CrossRefGoogle Scholar
  36. Migliore J, Baumel A, Juin M, Médail F (2012) From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus Myrtus. J Biogeogr 39:942–956CrossRefGoogle Scholar
  37. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  38. Murray E (1968) Oleaceae. In: Rechinger K-H (ed) Flora Iranica, No. 52. Akademische Druck- und Verlagsanstalt, GrazGoogle Scholar
  39. Newton C, Terral J-F, Ivorra S (2006) The Egyptian olive (Olea europaea subsp. europaea) in the later first millennium bc: origins and history using the morphometric analysis of olive stones. Antiquity 80:405–414CrossRefGoogle Scholar
  40. Pickering H, Patzelt A (2008) Field guide to the wild plants of Oman. Kew Publishing, Royal Botanical Garden, KewGoogle Scholar
  41. Pourasghar F, Tozuka T, Jahanbakhsh S, Sari Sarraf B, Ghaemi H, Yamagate T (2012) The internannual precipitation variability in the southern part of Iran as linked to large—scale climate modes. Clim Dyn 39:2,329–2,341CrossRefGoogle Scholar
  42. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  43. Rechinger K-H (1966) Sapindaceae. In Rechinger K-H (ed) Flora Iranica, No. 38. Akademische Druck- und Verlagsanstalt, GrazGoogle Scholar
  44. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie, MarseilleGoogle Scholar
  45. Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord. Supplément 1. Laboratoire de botanique historique et de palynologie, MarseilleGoogle Scholar
  46. Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord. Supplément 2. Laboratoire de botanique historique et de palynologie, MarseilleGoogle Scholar
  47. Reimer PJ, Baillie MGL, Bard E et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50000 years cal bp. Radiocarbon 51:1,111–1,150Google Scholar
  48. Renard M (2014) Les environnements végétaux et agricoles en Crète de 3200 à 2600 cal bp (1200 à 700 bc): étude multidisciplinaire de la série sédimentaire de Phaistos. MSc thesis, Aix-Marseille Université, Aix-en-Provence/MarseilleGoogle Scholar
  49. Riedl H (1968) Pinaceae. In Rechinger K-H (ed) Flora Iranica, No. 14. Akademische Druck- und Verlagsanstalt, GrazGoogle Scholar
  50. Rull V, López-Sáez JA, Vegas-Vilarrrúbia T (2008) Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). J Paleolimnol 40:399–411CrossRefGoogle Scholar
  51. Sabeti H (1976) Forests, trees, and shrubs of Iran. Iran University of Science and Technology Press, TehranGoogle Scholar
  52. Sitch S, Smith B, Prentice C, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonike K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185CrossRefGoogle Scholar
  53. Stevens LR, Wright HE, Ito E (2001) Proposed changes in seasonality of climate during the Lateglacial and Holocene at Lake Zeribar, Iran. Holocene 11:747–755Google Scholar
  54. Strabo J (1928) Geography, Vol. 5, Books 10–12. Loeb Classical Library 211. H. L. Jones (translation). Harvard University Press, LondonGoogle Scholar
  55. Strabo J (1930) Geography, Vol. 7, Books 15–16. Loeb Classical Library 241. H. L. Jones (translation). Harvard University Press, LondonGoogle Scholar
  56. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  57. Sumner WM (1977) Early settlements in Fars province, Iran. In: Levine LD, Young TC Jr (eds) Mountains and Lowlands: essays in the archaeology of greater Mesopotamia. Malibu, Undena, pp 291–305Google Scholar
  58. Tavernier J (2007) Iranica in the Achaemenid Period (cal 550–330 bc): Lexicon of Old Iranian Proper Names and Loanword Attested in Non-Iranian Texts. Orientalia Lovaniensia Analecta 158. Peeters Publishers, LeuvenGoogle Scholar
  59. UNDP/GEF (2008) Lake Parishan habitat mapping studies. Conservation of Iranian Wetland Project. Iran Department of EnvironmentGoogle Scholar
  60. UNDP/GEF (2010). In: Moser M (ed) Lake Parishan a concise baseline report, Conservation of Iranian Wetland Project. Iran Department of EnvironmentGoogle Scholar
  61. Van Zeist W, Bottema S (1991) Late Quaternary Vegetation of the Near East. Beihefte zum Tübinger Atlas des Vorderen Orients: Reihe A, Naturwissenschaften 18. Reichert, WiesbadenGoogle Scholar
  62. Vermoere M, Vanhecke L, Waelkens M, Smets E (2003) Modern and ancient olive stands near Sagalassos (south-west Turkey) and reconstruction of the ancient agricultural landscape in two valleys. Glob Ecol Biogeogr 12:217–235CrossRefGoogle Scholar
  63. Weeks LR, Alizadeh K, Niakan L, Alamdari K, Khosrowzadeh A, McCall B, Zeidi M (2006) The Neolithic settlement of highland SW Iran: new evidence from the Mamasani District. Iran 44:1–31Google Scholar
  64. Winbow C (2008) The native plants of Oman, an introduction. The Environment Society of Oman, RuwiGoogle Scholar
  65. Zohary D, Hopf M (1994) Domestication of plants in the Old World. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Morteza Djamali
    • 1
    • 2
    Email author
  • Matthew D. Jones
    • 3
  • Jérémy Migliore
    • 1
  • Silvia Balatti
    • 4
  • Marianela Fader
    • 1
  • Daniel Contreras
    • 1
  • Sébastien Gondet
    • 5
  • Zahra Hosseini
    • 1
  • Hamid Lahijani
    • 2
  • Abdolmajid Naderi
    • 2
  • Lyudmila S. Shumilovskikh
    • 1
  • Margareta Tengberg
    • 6
  • Lloyd Weeks
    • 7
  1. 1.Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE) - UMR CNRS 7263/IRD 237/Aix-Marseille Université/Avignon Université, Technopôle de l’Environnement Arbois-MéditerranéeAix-en-Provence Cedex 04France
  2. 2.Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS)TehranIran
  3. 3.School of GeographyUniversity of NottinghamNottinghamUK
  4. 4.Graduate School “Human Development in Landscapes” and Institut für Klassische AltertumskundeChristian-Albrechts-Universität zu KielKielGermany
  5. 5.UMR 5133 Archéorient (CNRS, Université Lyon 2)Lyon Cedex 7France
  6. 6.Laboratoire d’Archéozoologie et Archéobotanique, UMR 7209 CNRS, Département Ecologie et Gestion de la BiodiversitéMuséum National d’Histoire Naturelle (MNHN)ParisFrance
  7. 7.School of HumanitiesUniversity of New EnglandArmidaleAustralia

Personalised recommendations