Advertisement

Vegetation History and Archaeobotany

, Volume 25, Issue 2, pp 117–130 | Cite as

Late Pleistocene and Holocene palaeoenvironmental changes in central Tierra del Fuego (~54°S) inferred from pollen analysis

  • Lorena Laura MusottoEmail author
  • Ana María Borromei
  • Andrea Coronato
  • Brian Menounos
  • Gerald Osborn
  • Robert Marr
Original Article

Abstract

A pollen record was obtained from a coring site at La Correntina mire (54°33′S, 66°59′W, 206 m a.s.l.) to the east of Lago Fagnano, centre of Tierra del Fuego. The results indicate that the valley bottom was free of ice shortly before 15,400 cal bp. Pioneer vegetation included dwarf shrub heaths, grasses and herbs with sparsely distributed Nothofagus trees, indicative of dry conditions. Nothofagus expanded by 10,000 cal bp and the forest-steppe ecotone was established by 9,400 cal bp, implying warm conditions and an increase in available moisture. After ca. 5,000 cal bp, the development of a closed-canopy forest is interpreted as the result of wetter and colder conditions. After 3,000 cal bp, Nothofagus forest became more open, and by about 400 cal bp there was a further decline of the forest. A closed-canopy Nothofagus forest re-established after 400 cal bp.

Keywords

Pollen Late Pleistocene-Holocene Lago Fagnano La Correntina mire Tephrochronology Forest-steppe ecotone 

Notes

Acknowledgments

The authors are grateful to Juan Federico Ponce, María Soledad Candel (CADIC-CONICET, Ushuaia, Argentina) and Marcelo Adrián Martínez (INGEOSUR-CONICET, Universidad Nacional del Sur, Argentina) for field assistance during the coring, and Charles Stern (University of Colorado, USA) for discussion of the tephrochronology. We are grateful to Daniela Olivera (INGEOSUR-CONICET, Universidad Nacional del Sur, Argentina) for her help in the laboratory. Our thanks are also extended to Carlos Marcelo Distéfano (UAT-CONICET, Bahía Blanca, Argentina) for providing assistance with digital figures and to Mary Samolczyk (University of Calgary, Canada) for preparing tephra samples for microprobe analysis. We thank Vera Markgraf (University of Colorado, USA) and one anonymous reviewer for their constructive comments that helped to improve the final version of the manuscript. This paper was funded by Grants PICT 607 24/H083 of the SECyT (Universidad Nacional del Sur), PICTs 67/02 and 2012-0628 of the Agencia Nacional de Promoción Científica y Tecnológica of Argentina (ANPCyT), PIP 6198/05 of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), the National Science and Engineering Research Council, and by the Canada Research Chairs Program.

Supplementary material

334_2015_537_MOESM1_ESM.pdf (19 kb)
Supplementary material 1 (PDF 19 kb)

References

  1. Aravena JC, Lara A, Wolodarsky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Rev Chil Hist Nat 75:361–376Google Scholar
  2. Armstrong JT (1984) Quantitative analysis of silicate and oxide minerals: a reevaluation of ZAF corrections and proposal for new Bence-Albee coefficients. Microbeam Anal 19:208–212Google Scholar
  3. Auer V (1933) Verschiebungen der Wald- und Steppengebiete Feuerlands in post-glazialer Zeit. Acta Geogr 5:1–313Google Scholar
  4. Auer V (1958) The Pleistocene of Fuego-Patagonia. Part II: the history of the flora and vegetation. (Annales Academiae Scientiarum Fennicae Series A III, Geologica-Geographica 50) Suomalainen Tiedeakatemia, HelsinkiGoogle Scholar
  5. Bentley MJ, Hodgson DA, Smith JA, Cofaigh CO, Domack EW, Larter RD, Roberts SJ, Brachfeld S, Leventer A, Hjort C, Hillenbrand C-D, Evans J (2009) Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene 19:51–69CrossRefGoogle Scholar
  6. Birks HJ, Birks HH (1980) Quaternary palaeoecology. Arnold, LondonGoogle Scholar
  7. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474CrossRefGoogle Scholar
  8. Borromei AM, Coronato A, Quattrocchio M, Rabassa J, Grill S, Roig C (2007) Late Pleistocene–Holocene environments in Valle Carbajal, Tierra del Fuego, Argentina. J South Am Earth Sci 23:321–335CrossRefGoogle Scholar
  9. Borromei AM, Coronato A, Franzén LG, Ponce JF, López Sáez JA, Maidana N, Rabassa JO, Candel MS (2010) Multiproxy record of Holocene paleoenvironmental change, Tierra del Fuego, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 286:1–16CrossRefGoogle Scholar
  10. Buatois LA, Camacho HH (1993) Geología del sector nororiental del Lago Fagnano, Isla Grande de Tierra del Fuego. Rev Asoc Geol Argent 48:109–124Google Scholar
  11. Burry LS, Trivi de Mandri ME, D’Antoni HL (2007) Modern analogues and past environments in central Tierra del Fuego, Argentina. An Inst Patagon 35:5–14Google Scholar
  12. Collantes MB, Anchorena JA, Koremblit G (1989) A soil nutrient gradient in Magellanic Empetrum heathlands. Vegetatio 80:183–193CrossRefGoogle Scholar
  13. Coronato A, Seppälä M, Ponce JF, Rabassa J (2009) Glacial geomorphology of the Pleistocene Lake Fagnano ice lobe, Tierra del Fuego, southern South America. Geomorphol 112:67–81CrossRefGoogle Scholar
  14. Costa C, Smalley R, Schwartz DP, Stenner HD, Ellis M, Ahumada EA, Velasco MS (2006) Paleoseismic observations of an onshore transform boundary: the Magallanes-Fagnano fault, Tierra del Fuego, Argentina. Rev Asoc Geol Argent 61:647–657Google Scholar
  15. Esteban FD, Tassone A, Lodolo E, Menichetti M, Lippai H, Waldmann N, Darbo A, Baradello L, Vilas JF (2014) Basement geometry and sediment thickness of Lago Fagnano (Tierra del Fuego). Andean Geol 41:293–313Google Scholar
  16. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  17. Fontana SL, Bennett KD (2012) Postglacial vegetation dynamics of western Tierra del Fuego. Holocene 22:1,337–1,350Google Scholar
  18. Franzén LG (2006) Mineral matter, major elements, and trace elements in raised bog peat: a case study from southern Sweden, Ireland and Tierra del Fuego, south Argentina. In: Martini IP, Martínez Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes. (Developments in Earth Surface Processes 9) Elsevier, Amsterdam, pp 241–269Google Scholar
  19. Grimm E (2004) Tilia and TGView 2.0.2. Software. Illinois State Museum, Research and Collection Center, Springfield IlGoogle Scholar
  20. Haberle SG, Lumley SH (1998) Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S–47°S. J Volcanol Geotherm Res 84:239–256CrossRefGoogle Scholar
  21. Heusser CJ (1989a) Late Quaternary vegetation and climate of southern Tierra del Fuego. Quat Res 31:396–406CrossRefGoogle Scholar
  22. Heusser CJ (1989b) Climate and chronology of Antarctica and adjacent South America over the past 30,000 yr. Palaeogeogr Palaeoclimatol Palaeoecol 76:31–37CrossRefGoogle Scholar
  23. Heusser CJ (1993) Late Quaternary forest-steppe contact zone, Isla Grande de Tierra del Fuego, subantarctic South America. Quat Sci Rev 12:169–177CrossRefGoogle Scholar
  24. Heusser CJ (1998) Deglacial paleoclimate of the American sector of the Southern Ocean: late Glacial-Holocene records from the latitude of Canal Beagle (55°S), Argentine Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 141:277–301CrossRefGoogle Scholar
  25. Heusser CJ (2003) Ice Age Southern Andes—a chronicle of paleoecological events. (Developments in Quaternary Science 3) Elsevier, AmsterdamGoogle Scholar
  26. Heusser CJ, Rabassa J (1987) Cold climatic episode of Younger Dryas age in Tierra del Fuego. Nature 328:609–611CrossRefGoogle Scholar
  27. Heusser CJ, Rabassa J (1995) Late Holocene forest-steppe interaction at Cabo San Pablo, Isla Grande de Tierra del Fuego, Argentina. Quat S Am Antarctic Penins 9:173–182Google Scholar
  28. Hogg AG, Hua Q, Blackwell PG, Buck CE, Guilderson TP, Heaton TJ, Niu M, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 Southern Hemisphere calibration, 0–50,000 years cal bp. Radiocarbon 55:1,889–1,903Google Scholar
  29. Huber UM, Markgraf V, Schäbitz F (2004) Geographical and temporal trends in Late Quaternary fire histories of Fuego-Patagonia, South America. Quat Sci Rev 23:1,079–1,097Google Scholar
  30. Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248CrossRefGoogle Scholar
  31. Kilian R, Lamy F (2012) A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55° S). Quat Sci Rev 53:1–23CrossRefGoogle Scholar
  32. Loisel J, Yu Z (2013) Holocene peatland carbon dynamics in Patagonia. Quat Sci Rev 69:125–141CrossRefGoogle Scholar
  33. Markgraf V (1980) New data on the late and postglacial vegetation history of La Misión, Tierra del Fuego, Argentina. IV International Palynological Conference 3. Birbal Sahni Institut of Palaeobotany, Lucknow, India, pp 68–74Google Scholar
  34. Markgraf V (1983) Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7:43–70CrossRefGoogle Scholar
  35. Markgraf V (1993) Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeogr Palaeoclimatol Palaeoecol 102:53–68CrossRefGoogle Scholar
  36. Markgraf V, Huber UM (2010) Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 297:351–366CrossRefGoogle Scholar
  37. Massaccesi G, Roig FA, Martínez Pastur GJ, Barrera MD (2008) Growth patterns of Nothofagus pumilio trees along altitudinal gradients in Tierra del Fuego, Argentina. Trees 22:245–255CrossRefGoogle Scholar
  38. Mauquoy D, Blaauw M, Van Geel B, Borromei AM, Quattrocchio ME, Chambers F, Possnert G (2004) Late-Holocene climatic changes in Tierra del Fuego based on multi-proxy analyses of peat deposits. Quat Res 61:148–158CrossRefGoogle Scholar
  39. Mena F (1983) Excavaciones arqueológicas en Cueva Las Guanacas (RI-16), XI Región de Aisén. An Inst Patagon 14:67–75Google Scholar
  40. Menounos B, Clague JJ, Osborn G, Thompson Davis P, Ponce JF, Goehring B, Maurer M, Rabassa JO, Coronato A, Marr R (2013) Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina. Quat Sci Rev 77:70–79CrossRefGoogle Scholar
  41. Moore DM (1983) Flora of Tierra del Fuego. Nelson, OswestryGoogle Scholar
  42. Moreno PI, François JP, Villa-Martínez RP, Moy CM (2009) Millenial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat Sci Rev 28:25–38CrossRefGoogle Scholar
  43. Moreno PI, Vilanova I, Villa-Martínez RP, Garreaud RD, Rojas M, De Pol-Holz R (2014) Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millenia. Nat Commun 5(4):375Google Scholar
  44. Musotto LL (2013) Paleoambientes y paleoclimas del Cuaternario tardío en turberas del centro de la Isla Grande de Tierra del Fuego en base al análisis palinológico. Doctoral Thesis, Universidad Nacional del Sur, Bahía BlancaGoogle Scholar
  45. Musotto LL, Bianchinotti MV, Borromei AM (2012) Pollen and fungal remains as environmental indicators in surface sediments of Isla Grande de Tierra del Fuego, southernmost Patagonia. Palynology 36:162–179CrossRefGoogle Scholar
  46. National Weather Service Argentina (2013). http://www.smn.gov.ar/serviciosclimaticos. Accessed 6 Oct 2013
  47. Olivero EB, Malumián N (2008) Mesozoic-Cenozoic stratigraphy of the Fuegian Andes, Argentina. Geol Acta 6:5–18Google Scholar
  48. Pisano E (1977) Fitogeografía de Fuego-Patagonia Chilena. I.- Comunidades vegetales entre las latitudes 52° y 56° S. An Inst Patagon 8:121–250Google Scholar
  49. Ponce JF, Borromei AM, Rabassa J, Martinez O (2011) Late Quaternary palaeoenvironmental change in western Staaten Island (54.5°S, 64°W), Fuegian Archipelago. Quat Int 233:89–100CrossRefGoogle Scholar
  50. Premoli AC, Mathiasen P, Kitzberger T (2010) Southern-most Nothofagus trees enduring ice ages: genetic evidence and ecological niche retrodiction reveal high latitude (54° S) glacial refugia. Palaeogeogr Palaeoclimatol Palaeoecol 298:247–256CrossRefGoogle Scholar
  51. Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) Late Cenozoic of Patagonia and Tierra del Fuego. (Developments in Quaternary Sciences 11) Elsevier, Amsterdam, pp 151–204Google Scholar
  52. Schneider C, Glaser M, Kilian R, Santana A, Butorovic N, Casassa G (2003) Weather observations across the Southern Andes at 53°S. Phys Geogr 24:97–119CrossRefGoogle Scholar
  53. Smalley R, Kendrick E, Bevis MG, Dalziel IWD, Taylor F, Lautia E, Barriga R, Casassa G, Olivero EB, Piana E (2003) Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego. Geochem Geophys Geosyst 4:1070. doi: 10.1029/2002GC000446 CrossRefGoogle Scholar
  54. Stern CR (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454CrossRefGoogle Scholar
  55. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  56. Strelin J, Casassa G, Rosqvist G, Holmlund P (2008) Holocene glaciations in the Ema Glacier valley, Monte Sarmiento Massif, Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 260:299–314CrossRefGoogle Scholar
  57. Stuiver M, Reimer PJ, Reimer RW (2014) Calib 7.0: computer program for radiocarbon calibration. http://calib.qub.ac.uk/calib/
  58. Tercero-Bucardo N, Rovere AE (2010) Patrones de dispersión de semillas y colonización de Misodendrum punctulatum (Misodendraceae) en un matorral postfuego de Nothofagus antarctica (Nothofagaceae) del noroeste de la Patagonia. Rev Chil Hist Nat 83:375–386CrossRefGoogle Scholar
  59. Trivi de Mandri ME, Burry LS, D’Antoni HL (2006) Dispersión-depositación del polen actual en Tierra del Fuego, Argentina. Rev Mex Biodivers 77:89–95Google Scholar
  60. Tuhkanen S (1992) The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Bot Fenn 125:4–17Google Scholar
  61. Villa-Martínez R, Moreno PI (2007) Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quat Res 68:400–409CrossRefGoogle Scholar
  62. Von Post L (1929) Die Zeichenschrift der Pollenstatistik. Geologiska Föreningan i Stockholm. Förhandlingar (GFF) 51:543–565Google Scholar
  63. Waldmann N, Ariztegui D, Anselmetti FS, Austin Jr. JA, Moy CM, Stern C, Recasens C, Dunbar RB (2010) Holocene climatic fluctuations and positioning of the Southern Hemisphere Westerlies in Tierra del Fuego (54° S), Patagonia. J Quat Sci 25:1,063–1,075Google Scholar
  64. Waldmann N, Borromei AM, Recasens C, Olivera D, Martínez MA, Maidana NI, Ariztegui D, Austin JA. Jr, Anselmetti FS, Moy CM (2014) Integrated reconstruction of Holocene millennial-scale environmental changes in Tierra del Fuego, southernmost South America. Palaeogeogr Palaeoclimatol Palaeoecol 399:294–309CrossRefGoogle Scholar
  65. Weller D, Stern CR, Miranda CG, Moreno PI, Villa-Martínez R (2013) A very large (>20 km3) late-glacial eruption (Ho) of the Hudson volcano, southern Chile. GeoSur 2013. International Symposium on the Geology and Geophysics of the Southern Hemisphere, Viña del MarGoogle Scholar
  66. Whitlock C, Moreno P, Bartlein P (2007) Climatic controls of Holocene fire patterns in southern South America. Quat Res 68:28–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lorena Laura Musotto
    • 1
    Email author
  • Ana María Borromei
    • 1
  • Andrea Coronato
    • 2
  • Brian Menounos
    • 3
  • Gerald Osborn
    • 4
  • Robert Marr
    • 4
  1. 1.Departamento de GeologíaUniversidad Nacional del Sur, INGEOSUR-CONICETBahía BlancaArgentina
  2. 2.Laboratorio de Geomorfología y CuaternarioCADIC-CONICETUshuaiaArgentina
  3. 3.Natural Resources and Environmental Studies Institute and Geography ProgramUniversity of Northern British ColumbiaPrince GeorgeCanada
  4. 4.Department of GeoscienceUniversity of CalgaryCalgaryCanada

Personalised recommendations