Skip to main content

Advertisement

Log in

Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6,500 years

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

We report a palaeoenvironmental reconstruction since 6,650 cal. bp from the Lago San Martín area, from a peat-bog sequence, Mallín Paisano Desconocido, located at 48°58′S, 72°14′W. Between 6,650 and 4,500 cal. bp we can infer a shrub steppe dominated by Asteraceae subf. Asteroideae associated with other shrubs under relatively dry conditions, through an intensification of the westerly wind belt and a steepening in the west–east precipitation gradient. From 4,500 to 3,000 cal. bp a shrub-grass steppe development suggests a slight increase in moisture conditions although the environmental conditions remain dry. From 3,000 cal. bp a grass steppe represented by Poaceae and subordinate herbs developed, suggesting an increase in moisture availability and weaker westerly flow precipitation. The last 400 cal. bp were characterized by a change from grass to shrubby communities which could be related to the beginning of the Little Ice Age, whereas the last century shows signals of anthropic impact. The palaeoenvironmental interpretation from the Lago San Martín basin is based on moisture availability variations in relation to precipitation pattern changes of westerly origin. These trends are consistent with interpretations of records from the Andean and extra-Andean areas. The comparison with other sequences allows us to interpret the palaeoenvironmental changes in the Lago San Martín area and to integrate these variations within a regional framework, interpreting them in relation to southern past climatic changes. At a regional scale, the records show an increase in westerly intensity during the mid-Holocene, whereas weaker westerly flows are postulated for the late Holocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aniya M (1995) Holocene glacial chronology in Patagonia: Tyndall and Uppsala glaciers. Artic Alp Res 27:311–322

    Article  Google Scholar 

  • Aüer V, Cappannini D (1957) La erosión en la región de los lagos San Martín y Tar. IDIA Marzo, pp 7–27

  • Bamonte FP (2012) Cambios paleoecológicos y su posible relación con las ocupaciones humanas durante el Holoceno en el SO de Santa Cruz, Argentina. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata

  • Bamonte FP, Mancini MV (2009) Características ambientales del ecotono Bosque-Estepa durante el Holoceno medio (Santa Cruz, Argentina). In: Salemme M, Santiago F, Alvarez M, Piana E, Vazquez M, Mansur ME (eds) Arqueología de Patagonia: una mirada desde el último confín. Editorial Utopías Ushuaia, pp 881–892

  • Bamonte FP, Mancini MV (2011) Palaeoenvironmental changes since Pleistocene–Holocene transition: pollen analysis from a wetland in Southwestern Patagonia (Argentina). Rev Palaeobot Palynol 165:103–110

    Article  Google Scholar 

  • Bamonte FP, Mancini MV, Belardi JB, Espinosa S (2013) Inferencias paleoambientales a partir del análisis polínico de sitios arqueológicos del área del lago San Martín (Santa Cruz, Argentina). Magallania 41:205–220

    Article  Google Scholar 

  • Bengtsson L, Enell M (1986) Chemical analysis. In: Berglund BE (ed) Handbook of Palaeoecology and Palaeohydrology. Wiley, Chichester, pp 423–451

    Google Scholar 

  • Bianchi MM, Olabuenaga S (2006) A three-year pollen record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 22:247–257

    Article  Google Scholar 

  • Bonarrelli G, Nágera JJ (1921) Observaciones geológicas en las inmediaciones del lago San Martín (Territorio de Santa Cruz). Boletín Ministerio de Agricultura. Dirección General de Minas, Geología e Hidrologíaa Serie B (Geología) 27:39

  • Borrelli P, Oliva G (eds) (2001) Ganadería ovina sustentable en la Patagonia Austral. Tecnología de manejo intensivo. INTA, Santa Cruz

    Google Scholar 

  • Brown CA (1960) Palynological techniques. Louisana State University, Baton Rouge

    Google Scholar 

  • Correa MM (ed) (1984) Flora Patagónica. IV-a: Dicotiledóneas Dialipétalas (Salocaceae a Cruciferae). Tomo VIII. INTA, Buenos Aires

  • Correa MM (ed) (1999) Flora Patagonica. VI: Dicotiledóneas Gamopétalas (Ericaceae a Calyceraceae).Tomo VIII. INTA, Buenos Aires

  • De Porras ME (2010) Dinámica de la vegetación de la Meseta Central de Santa Cruz durante los últimos 11.000 años: forzantes bióticos y abióticos. Ph.D. Thesis, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata

  • Echeverria ME, Sottile GD, Mancini MV, Fontana SL (2014) Nothofagus forest dynamics and palaeoenvironmental variations during the mid and late Holocene, in southwest Patagonia. Holocene. doi:10.1177/0959683614534742

    Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Fletcher MS, Moreno PI (2011) Zonally symmetric changes in the strength and positions of the Southern Westerlies drove atmospheric CO2 variations over the past 14 k.y. Geology 39:419–422

    Article  Google Scholar 

  • Fletcher MS, Moreno PI (2012) Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat Int 253:32–46

    Article  Google Scholar 

  • Garreaud RD (2007) Precipitation and circulation covariability in the extratropics. J Clim 20:4,789-4,797

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American Climate. PALAEO 3 Special Issue (LOTRED South America). Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

  • Garreaud RD, Lopez P, Minvielles M, Rojas M (2013) Large scale control on the Patagonia climate. J Clim 26:215–236

    Article  Google Scholar 

  • Glasser NF, Harrison S, Winchester V, Aniya M (2004) Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob Planet Chang 43:79–101

    Article  Google Scholar 

  • Glasser NF, Jansson KN, Goodfellow BW, De Angelis H, Rodnight H, Rood DH (2011) Cosmogenic nuclide exposure ages for marains in the Lago San Martín Valley, Argentina. Quat Res 75:636–646

    Article  Google Scholar 

  • Grimm E (2004) Tilia and TGView 2.0.2. Software. Illinois State Museum. Research and Collection Center. Springfield

  • Guerrido C, Fernandez D (2007) Flora Patagonia: Southern Forest/Bosques Australes. Fantástico Sur, Punta Arenas

    Google Scholar 

  • Hein AS, Hulton NRJ, Dunai TJ, Sugden DE, Kaplan MR, Xu S (2010) The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat Sci Rev 29:1,212–1,227

  • Heiri O, Lotter A, Lenmcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Higuera PE, Brubaker LB, Anderson PM, Hu FS, Brown TA (2009) Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219

    Article  Google Scholar 

  • Hoffman JAJ (1975) Atlas climatológico de América del Sur. OMM–WMO–UNESCO, Hungría

    Google Scholar 

  • Huber UM, Markgraf V (2003) Holocene fire frequency and climate change at Río Rubens Bog, southern Patagonia. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, pp 357–380

    Chapter  Google Scholar 

  • Jacobson GL Jr, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96

    Article  Google Scholar 

  • Kilian R, Lamy F (2012) A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Quat Sci Rev 53:1–23

    Article  Google Scholar 

  • Mancini MV (2009) Holocene vegetation and climate changes from a peat pollen record of the forest-steppe ecotone, Southwest of Patagonia (Argentina). Quat Sci Rev 28:1,490–1,497

  • Mancini MV, De Porras ME, Bamonte FP (2012) Southernmost South America Steppes: vegetation and its modern pollen-assemblages representation. In: Germanno DM (ed) Steppe ecosystems: dynamics, land use and conservation. Nova Science Pub Inc, New York, pp 141–156

  • Marcos MA, Mancini MV (2012) Modern pollen and vegetation relationships in Northeastern Patagonia (Golfo San Matías, Río Negro). Rev Palaeobot Palynol 171:19–26

    Article  Google Scholar 

  • Markgraf V, Huber UM (2010) Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclimatol Palaeoecol 297:351–366

    Article  Google Scholar 

  • Markgraf V, Bradbury P, Schwalb A, Burns S, Stern Ch, Ariztegui D, Gilli A, Anselmetti F, Stine S, Maidana N (2003) Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. Holocene 13:581–591

    Article  Google Scholar 

  • Masiokas MH, Luckman BH, Villalba R, Delgado S, Skavarca P, Ripalta A (2009) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:351–362

    Article  Google Scholar 

  • Mayr C, Wille M, Haberzettl T et al (2007) Holocene variability of the Southern Hemisphere westerlies in Argentinean Patagonia (52°S). Quat Sci Rev 26:579–584

    Article  Google Scholar 

  • McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere Calibration 0–1000 cal bp. Radiocarbon 46:1,087–1,092

  • Mercer JH (1984) Late Caenozoic glacial variations in South America south of the equator. In: Vogel JC (ed) Late Caenozoic palaeoclimates of the southern hemisphere. Balkena, Rotterdam, pp 45–58

    Google Scholar 

  • Mercer JH, Ager TA (1983) Glacial and floral changes in Southern Argentina since 14,000 years Ago. Nat Geogr Soc Res 15:457–477

    Google Scholar 

  • Moreno PI, François JP, Villa-Martínez RP, Moy CM (2009) Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat Sci Rev 28:25–38

    Article  Google Scholar 

  • Moreno PI, Villa-Martínez RP, Cárdenas ML, Sagrado EA (2012) Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52°S). Quat Sci Rev 41:1–21

    Article  Google Scholar 

  • Movia C, Soriano A, León R (1987) La vegetación de la Cuenca del Río Santa Cruz (provincia de Santa Cruz, Argentina). Darwiniana 28:9–78

    Google Scholar 

  • Moy CM, Moreno PI, Dunbar RB, Kaplan MR, Francois JP, Villalba R, Haberzettl T (2009) Climate change in Southern South America during the Last Two Millennia. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Dev Palaeoenviron Res 14:353–393

  • Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D, Jones PD, Grosjean M, Esper J, Lopez L, Wanner H (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett 37(L14):708

    Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala O, Golluscio R (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101

    Google Scholar 

  • Pereyra FX, Fauqué L, González Díaz EF (2002) Geomorfología. In: Haller MJ (ed) Geología y Recursos Naturales de Santa Cruz. Sociedad Geológica Argentina, El Calafate, pp 325–352

    Google Scholar 

  • Porter SC (2000) Onset of Neoglaciation in the Southern Hemisphere. J Quat Sci 15:395–408

    Article  Google Scholar 

  • Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) The Late Cenozoic of Patagonia and Tierra del Fuego. Developments in Quaternary Sciences, Elsevier, Amsterdam, pp 151–204

    Chapter  Google Scholar 

  • Rabassa J, Clapperton CH (1990) Quaternary glaciations of the Southern Andes. Quat Sci Rev 9:153–174

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E et al. (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr bp. Radiocarbon 46:1,029–1,058

  • Schäbitz F, Wille M, Francois JP et al (2013) Reconstruction of palaeoprecipitation based on pollen transfer functions—the record of the last 16 ja from Laguna Potrok Aike, southern Patagonia. Quat Sci Rev 71:175–190

    Article  Google Scholar 

  • Sottile GD, Bamonte FP, Mancini MV, Bianchi MM (2012) Insights into Holocene vegetation and climate changes at the Southeastern side of the Andes: Nothofagus Forest and Patagonian steppe fire records. Holocene 22:1,309–1,322

  • Strelin JA, Denton GH, Vandergoes MJ, Ninnemann US, Putnam AE (2011) Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quat Sci Rev 30:2,551–2,569

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0.2. https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/1561/1565

  • Tonello MS, Mancini MV, Seppä H (2009) Quantitative reconstruction of Holocene precipitation changes in southern Patagonia. Quat Res 72:410–420

    Article  Google Scholar 

  • Villa-Martínez RP, Moreno PI (2007) Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quat Res 68:400–409

    Article  Google Scholar 

  • Warren CR, Sudgen DE (1993) The Patagonian icefield: a glaciological review. Arct Alp Res 25:316–331

    Article  Google Scholar 

  • Wenzens G (1999) Fluctuations of oulet and valley glaciers in the Southern Andes (Argentina) during the past 13,000 years. Quat Res 51:238–247

    Article  Google Scholar 

  • Wille M, Schäbitz F (2009) Late-glacial and Holocene climate dynamics at the steppe/forest ecotone in southernmost Patagonia, Argentina: the pollen record from a fen near Brazo Sur, Lago Argentino. Veget Hist Archaeobot 18:225–234

    Article  Google Scholar 

  • Wille M, Maidana NI, Schäbitz F et al (2007) Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Rev Palaeobot Palynol 146:234–246

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by CONICET (PIP 1265) and UNMdP (EXA 510/10; EXA 602/12). We thank the National Science Foundation (NSF) Arizona and T. Jull for financial support for AMS radiocarbon dating. We are grateful to the Díaz (Ea. La Federica) and Muruzábal (Ea. Sierra Nevada) families for allowing access to the workplace and to Marcos Emanuel Echeverría for logistic support in the field and critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Paula Bamonte.

Additional information

Communicated by P. I. Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamonte, F.P., Mancini, M.V., Sottile, G.D. et al. Vegetation dynamics from Lago San Martín area (Southwest Patagonia, Argentina) during the last 6,500 years. Veget Hist Archaeobot 24, 267–277 (2015). https://doi.org/10.1007/s00334-014-0473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-014-0473-z

Keywords

Navigation