Vegetation History and Archaeobotany

, Volume 24, Issue 2, pp 279–292 | Cite as

Possible linkages of palaeofires in southeast Amazonia to a changing climate since the Last Glacial Maximum

  • Barbara HermanowskiEmail author
  • Marcondes Lima Da Costa
  • Hermann Behling
Original Article


A 200 cm-long high resolution macro-charcoal and pollen record from the Lagoa da Cachoeira in Serra Sul dos Carajás (Serra Sul) in southeast Amazonia reveals insights into local palaeofire over the last 26,200 years. Local fires in Serra Sul were most frequent in transition periods from dry to wet environmental conditions between 11,000 and 10,200 years ago, and under seasonal climatic conditions after 5,000 years ago. During pronounced dry periods fires were not a substantial component of the environment in Serra Sul. An anthropogenic influence on fire in Serra Sul may have played a role since the beginning of the Holocene, but is not a likely driver of palaeofire variability. Charcoal records for southern Amazonia coupled with proxy data for precipitation and changing Atlantic Sea Surface Temperature (SST) suggest that Holocene palaeofires in southern Amazonia are driven by changes in climate.


Amazonian forest and savanna Late Pleistocene Holocene Palaeofire Climate change 



Thanks to Martin Zweigert for assistance in pollen preparation, and Malte Semmler for the introduction to Clam software. The CNPq is thanked for fieldwork support and funding of the second author (Proc. 471 109/03-7). We also thank the Vale do Rio Doce company for logistical support and IBAMA for the permission to carry out fieldwork in the reserve Serra Sul dos Carajás. Funding was provided by the German Research Foundation (DFG project BE-2116/11-1).


  1. Absy ML, Cleef A, Fournier M, Martin L, Servant M, Sifeddine A, Da Silva F, Soubiès F, Suguio K, Turcq B, Van der Hammen T (1991) Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de L’Amazonie au cours des 60,000 dernières années. Première comparaison avec d’autres régions tropicales. CR Acad Sci Paris II 312:673–678Google Scholar
  2. Alley RB, Ágústsdóttir AM (2005) The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24(123–1):149Google Scholar
  3. Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486CrossRefGoogle Scholar
  4. Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001a) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–701CrossRefGoogle Scholar
  5. Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001b) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643CrossRefGoogle Scholar
  6. Behling H (1996) First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the Late-glacial. Veget Hist Archaeobot 5:241–246CrossRefGoogle Scholar
  7. Behling H (2001) Late Quaternary environmental changes in the Lagoa da Curuça region (eastern Amazonia, Brazil) and evidence of Podocarpus in the Amazon lowland. Veget Hist Archaeobot 10:175–183CrossRefGoogle Scholar
  8. Behling H, Costa ML (2000) Holocene environmental changes from the Rio Curua record in the Caxiuana region, eastern Amazon Basin. Quat Res 53:369–377CrossRefGoogle Scholar
  9. Behling H, Costa ML (2001) Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Para State, eastern Amazonia. Rev Palaeobot Palynol 114:145–155CrossRefGoogle Scholar
  10. Bennett KD (1998) Psimpoll 4.10 and Pscomb 1.03—C programs for plotting pollen diagrams and analysing pollen data.
  11. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  12. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, De Menocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial climates. Science 278:1,257–1,266CrossRefGoogle Scholar
  13. Burbridge RE, Mayle FE, Killeen TJ (2004) Fifty-thousand-year vegetation and climate history of Noel Kempff Mercado National Park, Bolivian Amazon. Quat Res 61:215–230CrossRefGoogle Scholar
  14. Bush MB, Miller MC, De Oliveira PE, Colinvaux PA (2000) Two histories of environmental change and human disturbance in eastern lowland Amazonia. Holocene 10:543–553CrossRefGoogle Scholar
  15. Bush MB, Silman MR, De Toledo MB, Listopad C, Gosling WD, Williams C, De Oliveira PE, Krisel C (2007a) Holocene fire and occupation in Amazonia: records from two lake districts. Philos Trans R Soc B 362:209–218CrossRefGoogle Scholar
  16. Bush MB, Silman MR, McMichael C, Saatchi S (2007b) Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philos Trans R Soc B 363:1,795–1,802CrossRefGoogle Scholar
  17. Bush MB, Silman MR, Listopad CMCS (2007c) A regional study of Holocene climate change and human occupation in Peruvian Amazonia. J Biogeogr 34:1,342–1,356CrossRefGoogle Scholar
  18. Carcaillet C, Bouvier M, Fréchette B, Larouche AC, Richard PJH (2001) Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11:467–476CrossRefGoogle Scholar
  19. Carreira LMM, Barth OM (2003) Atlas de Pólen da vegetação de canga da Serra de Carajás (Pará, Brasil). Museu Paraense Emílio Goeldi, BelémGoogle Scholar
  20. Carreira LMM, Da Silva MF, Lopes JRC, Nascimento LAS (1996) Catálogo de Pólen das Leguminosas da Amazônia Brasileira. Museu Paraense Emílio Goeldi, BelémGoogle Scholar
  21. Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d’Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1–6Google Scholar
  22. Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic ITCZ variability: influence of the local cross-equatorial SST gradient, and remote forcing from the eastern equatorial Pacific. J Geophys Res 107:1–19Google Scholar
  23. Clark JS (1988) Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  24. Cleef A, Silva MFF (1994) Plant communities of the Serra dos Carajás (Pará), Brazil. Boletim do Museu Paraense Emílio Goeldi, série Botânica 10:269–281Google Scholar
  25. Clement AC, Seager R, Cane MA (2000) Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15:731–737CrossRefGoogle Scholar
  26. Colinvaux PA, Liu KB, De Oliveira P, Bush MB, Miller MC, Steinitz Kannan M (1996) Temperature depression in the lowland tropics in glacial times. Clim Chang 32:19–33CrossRefGoogle Scholar
  27. Cook KH (2009) South American climate variability and change: remote and regional forcing processes. In: Vimeaux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Developments in Paleoenvironmental Research 14. Dordrecht, pp 193–212. doi: 10.1007/978-90-481-2672-9
  28. Cordeiro RC, Turcq B, Suguio K, da Silva AO, Sifeddine A, Volkmer-Ribeiro C (2008) Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Glob Planet Chang 61:49–62CrossRefGoogle Scholar
  29. Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Silva Dias PL, Viana O (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66CrossRefGoogle Scholar
  30. de Melo MLD (2007) Simulacões de clima para o Holoceno Médio usando o MCGA do CPTEC, com ênfase sobre a América Sul. Tese de Doutorado do Curso de Pós-Graduação em Meteorologia, Instituto Nacional de Pescisas Especiais 15206-TDI/1306.
  31. De Menocal P, Ortiz J, Guilderson T, Sarnthein M (2000) Coherent high- and low-latitude climate variability during the Holocene Warm Period. Science 288:2,198–2,202CrossRefGoogle Scholar
  32. Elias VO, Simoneit BRT, Cordeiro RC, Turcq B (2001) Evaluating levoglucosan as an indicator of biomass burning in Carajás, Amazônia: a comparison to the charcoal record. Geochim Cosmochim Acta 6:267–272CrossRefGoogle Scholar
  33. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, New YorkGoogle Scholar
  34. Fu R, Zhu B, Dickinson RE (1999) How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon? J Clim 12:1,306–1,321CrossRefGoogle Scholar
  35. Fu R, Dickinson RE, Chen M, Wang H (2001) How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? J Clim 14:4,003–4,026CrossRefGoogle Scholar
  36. Garreaud R, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:80–195Google Scholar
  37. Gosling WD, Mayle FE, Tate NJ, Killeen TJ (2009) Differentiation between neotropical rainforest, dry forest, and savannah ecosystems by their modern pollen spectra and implications for the fossil pollen record. Rev Palaeobot Palynol 153:70–85CrossRefGoogle Scholar
  38. Gouveia SEM, Pessenda LCR, Aravena R, Boulet R, Scheel-Ybert R, Bendassoli JA, Ribeiro AS, Freitas HA (2002) Carbon isotopes in charcoal and soils in studies of paleovegetation and climate changes during the late Pleistocene and the Holocene in the southeast and centerwest regions of Brazil. Glob Planet Chang 33:95–106CrossRefGoogle Scholar
  39. Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  40. Hastenrath S, Greischar L (1993) Circulation mechanisms related to northwest Brazil rainfall anomalies. J Geophys Res 98:5,093–5,102CrossRefGoogle Scholar
  41. Haug G, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1,304–1,308CrossRefGoogle Scholar
  42. Hermanowski B, Costa ML, Behling H (2012) Environmental changes in southeastern Amazonia during the last 25,000 years revealed from a paleoecological record. Quat Res 77:138–148CrossRefGoogle Scholar
  43. IBAMA (2003) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Plano de manejo para uso múltiplo da floresta nacional de Carajás.
  44. INMET (2011) Instituto Nacional de Meterologia, Monitoramento das Estações Convencionais Ministério da Agricultura, Pecuária e Abastecimento.
  45. Irion G, Bush MB, de Mello JAN, Stüben D, Neumann T, Müller G, De Morais JO, Junk JW (2006) A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeogr Palaeoclimatol Palaeoecol 240:523–535CrossRefGoogle Scholar
  46. Keefer DK, deFrance SD, Moseley ME, Richardson JB III, Satterlee DR, Day-Lewis A (1998) Early Maritime Economy and El Niño Events at Quebrada Tacahuay, Peru. Science 281:1,833–1,835CrossRefGoogle Scholar
  47. Kipnis R, Caldarelli SB, De Oliveira WC (2005) Contribuição para a cronologia da colonização amazônica e suas implicações teóricas. Rev Arqueol 18:81–93Google Scholar
  48. Lea DW, Pak DK, Peterson LC, Hughen KA (2003) Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301:1,361–1,364CrossRefGoogle Scholar
  49. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4,308–4,318CrossRefGoogle Scholar
  50. MacDonald GM (1989) Postglacial palaeoecology of the subalpine forest-grassland ecotone of southwestern Alberta: new insights on vegetation and climate change in the Canadian Rocky Mountains and adjacent foothills. Palaeogeogr Palaeoclimatol Palaeoecol 73:155–173CrossRefGoogle Scholar
  51. Magalhães MP (2009) Evolução antropomorfa da Amazônia. Rev Hist Arte Arqueol 12:5–38Google Scholar
  52. Marchant R, Almeida L, Behling H et al (2002) Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Rev Palaeobot Palynol 121:1–75CrossRefGoogle Scholar
  53. Marengo JA, Druyan LM, Hastenrath S (1993) Observational and modeling studies of Amazonia interannual climate variability. Clim Chang 23:267–286CrossRefGoogle Scholar
  54. Marengo JA, Liebmann B, Kousky VE, Filizola NP, Wainer IC (2001) Onset and end of the rainy season in the Brazilian Amazon Basin. J Clim 14:833–852CrossRefGoogle Scholar
  55. Martins SV, Rodrigues RR (2002) Gap-phase regeneration in a semideciduous mesophytic forest, south-eastern Brazil. Plant Ecol 163:51–62CrossRefGoogle Scholar
  56. Mayle FE (2006) The Late Quaternary biogeographical history of South American seasonally dry tropical forests: insights from palaeo-ecological data. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical Savannas and seasonally dry forests: plant diversity, biogeography, and conservation. Systematics Association Special Volume Series 69. CRC, Boca Raton, pp 395–416Google Scholar
  57. Mayle FE, Burbridge RE, Killeen TJ (2000) Millennial-scale dynamics of southern Amazonian rain forests. Science 290:2,291–2,294CrossRefGoogle Scholar
  58. Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165CrossRefGoogle Scholar
  59. Nepstad D, Lefebvre P, Lopes da Silva U, Tomasella J, Schlesinger P, Solorzano L, Moutinho P, Ray D, Guerreira Benito J (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis. Glob Chang Biol 10:704–717CrossRefGoogle Scholar
  60. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2,464–2,479CrossRefGoogle Scholar
  61. Nunes JA (2009) Florística, estrutura e relações solo-vegetação em gradient fitofisionômico sobre canga, na Serra Sul, FLONA de Carajás – Pará. Dissertação apresentada á Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Botânica, para obtenção do titulo de Magister Scientiae.
  62. Otto-Bliesner BL, Brady EC, Shin S-I, Liu Z, Shields C (2003) Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:1–4Google Scholar
  63. Pennington RT, Prado DE, Pendry CA (2001) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  64. Pinard MA, Huffman J (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J Trop Ecol 13:727–740CrossRefGoogle Scholar
  65. Posey DA (1985) Indigenous management of tropical forest ecosystems: the case of the Kayapó Indians in the Brazilian Amazon. Agrofor Syst 3:139–158CrossRefGoogle Scholar
  66. Power MJ, Marlon J, Ortiz N et al (2008) Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn 30:887–907CrossRefGoogle Scholar
  67. Power MJ, Marlon JR, Bartlein PJ, Harrison SP (2010) Fire history and the Global Charcoal Database: a new tool for hypothesis testing and data exploration. Palaeogeogr Palaeoclimatol Palaeoecol 291:52–59CrossRefGoogle Scholar
  68. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  69. Rayol BP (2006) Análise florística e estrutural da vegetação xerofítica das savannas metalófilas na Floresta Nacional de Carajás; subssídios à conservação. Dissertação de mestrado em Botânica com area de concentração em Botânica Tropical pela Universidade Federal Rural da Amazônia e Museu Paraense Emílio Goeldi.
  70. Reimer PJ, Baillie MGL, Bard E et al (2004) IntCal04—terrestrial radiocarbon age calibration, 0–26 cal kyr bp. Radiocarbon 46:1,029–1,058Google Scholar
  71. Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) An ~15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283:516–520CrossRefGoogle Scholar
  72. Roosevelt AC, da Costa ML, Lopes Machado C, Michab M, Mercier N, Valladas H, Feathers J, Barnett W, da Silveira MI, Henderson A, Sliva J, Chernoff B, Reese DS, Holman JA, Toth N, Schick K (1996) Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272:373–384CrossRefGoogle Scholar
  73. Roubik DW, Moreno E (1991) Pollen and Spores of Barro Colorado Island. Monographs in systematic botany from the Missouri Botanical Garden 36. Missouri Botanical Garden, St. Louis, MissGoogle Scholar
  74. Rühlemann C, Mulitza S, Müller PJ, Wefer G, Zahn R (1999) Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402:511–514CrossRefGoogle Scholar
  75. Sandweiss DH, Richardson JB, Reitz EJ, Rollins HB, Maasch KA (1996) Geoarchaeological evidence from Peru for a 5000 years bp onset of El Niño. Science 273:1,531–1,533CrossRefGoogle Scholar
  76. Sandweiss DH, Maasch KA, Burger RL, Richardson JB III, Rollins HB, Clement A (2001) Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29:603–606CrossRefGoogle Scholar
  77. Sifeddine A, Martin L, Turcq B, Volkmer-Ribeiro C, Soubiès F, Cordeiro RC, Suguio K (2001) Variations of the Amazonian rainforest environment: a sedimentological record covering 30,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 168:221–235CrossRefGoogle Scholar
  78. Silva MFF, Secco R, Lobo MGA (1996) Aspectos ecológicos da vegetação rupestre da Serra dos Carajás, Estado do Pará, Brasil. Acta Amazonica 26:17–44Google Scholar
  79. Soubiès F (1979) Existence d’une phase seche en Amazonie Bresilienne datee par la presence de charbons dans les sols (6.000–8.000 ans bp). Cah. O.R.S.T.O.M., sér. Géology 1979–1990:133–148Google Scholar
  80. Stevenson J, Haberle SG (2005) Macro charcoal analysis: a modified technique used by the Department of Archaeology and Natural History. PalaeoWorks Technical Report 5:8.
  81. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  82. Stott P (2000) Combustion in tropical biomass fires: a critical review. Prog Phys Geogr 24:355–377CrossRefGoogle Scholar
  83. Urrego DH (2006) Long-term vegetation and climate change in Western Amazonia. Ph.D. Dissertation. Department of Biological Sciences, Florida Institute of Technology Melbourne, FL, USA. 278 pGoogle Scholar
  84. Urrego DH, Bush MB, Silman MR, Correa-Metrio A, Ledru M-P, Mayle FE, Paduano G, Valencia BG (2009) Millennial-scale ecological changes in tropical South America since the Last Glacial Maximum. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions. Developments in Paleoenvironmental Research 14, Berlin, Heidelberg, pp 283–300Google Scholar
  85. van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275:54–60CrossRefGoogle Scholar
  86. Wang X, Auler AS, Edwards RL, Cheng H, Ito E, Wang Y, Kong X, Solheid M (2007) Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys Res Lett 34:1–5Google Scholar
  87. Weldeab S, Schneider RR, Kölling M, Wefer G (2005) Holocene African droughts relate to eastern equatorial Atlantic cooling. Geology 33:981–984CrossRefGoogle Scholar
  88. Weldeab S, Schneider RR, Kölling M (2006) Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities. Earth Planet Sci Lett 241:699–706CrossRefGoogle Scholar
  89. Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, DordrechtGoogle Scholar
  90. Withlock C, Millspaugh SH (1996) Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 6:7–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Barbara Hermanowski
    • 1
    Email author
  • Marcondes Lima Da Costa
    • 2
  • Hermann Behling
    • 1
  1. 1.Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
  2. 2.Instituto de GeociênciasUniversidade Federal do ParáGuamáBrazil

Personalised recommendations