Vegetation History and Archaeobotany

, Volume 23, Issue 3, pp 249–264 | Cite as

The potential of stomata analysis in conifers to estimate presence of conifer trees: examples from the Alps

  • Brigitta AmmannEmail author
  • Willem O. van der Knaap
  • Gerhard Lang
  • Marie-José Gaillard
  • Petra Kaltenrieder
  • Manfred Rösch
  • Walter Finsinger
  • Herbert E. Wright
  • Willy Tinner
Original Article


To estimate whether or not a plant taxon found in the fossil record was locally present may be difficult if only pollen is analyzed. Plant macrofossils, in contrast, provide a clear indication of a taxon’s local presence, although in some lake sediments or peats, macrofossils may be rare or degraded. For conifers, the stomata found on pollen slides are derived from needles and thus provide a valuable proxy for local presence and they can be identified to genus level. From previously published studies, a transect across the Alps based on 13 sites is presented. For basal samples in sandy silt above the till with high pollen values of Pinus, for example, we may distinguish pine pollen from distant sources (samples with no stomata), from reworked pollen (samples with stomata present). The first apparent local presence of most conifer genera based on stomata often but not always occurs together with the phase of rapid pollen increase (rational limit). An exception is Larix, with its annual deposition of needles and heavy poorly dispersed pollen, for it often shows the first stomata earlier, at the empirical pollen limit. The decline and potential local extinction of a conifer can sometimes be shown in the stomata record. The decline may have been caused by climatic change, competition, or human impact. In situations where conifers form the timberline, the stomata record may indicate timberline fluctuations. In the discussion of immigration or migration of taxa we advocate the use of the cautious term “apparent local presence” to include some uncertainties. Absence of a taxon is impossible to prove.


Stomata Conifers Presence–absence of plant taxa Apparent local presence European Alps 



We dedicate this paper to Hilary H. Birks in appreciation of her numerous and inspiring contributions to palaeoecology, of her help, and friendship. We are grateful to Vera Markgraf for submitting her data from Boehnigsee to the pollen data bases, to Peter von Ballmoos for the help with figures and to three anonymous reviewers for their helpful comments.


  1. Ammann B (1989) Late-quaternary palynology at Lobsigensee—regional vegetation history and local lake development. Diss Bot 137:157Google Scholar
  2. Ammann B, Wick L (1993) Analysis of fossil stomata of conifers as indicators of the alpine tree line fluctuations during the Holocene. In: Frenzel B (ed) European palaeoclimate and man. Fischer, Stuttgart, pp 175–185Google Scholar
  3. Ammann B, Van Leeuwen JFN, Van der Knaap WO et al (2013) Vegetation responses to rapid warming and to minor climatic fluctuations during the late-glacial interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol 391:40–59CrossRefGoogle Scholar
  4. Barnekow L (1999) Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. Holocene 9:253–265CrossRefGoogle Scholar
  5. Bertsch K (1935) Der deutsche Wald im Wechsel der Zeiten. Heine, TübingenGoogle Scholar
  6. Bertsch K (1940) Geschichte des deutschen Waldes. Fischer, JenaGoogle Scholar
  7. Birks HH (1973) Modern macrofossil assemblages in lake sediments in Minnesota. In: Birks HJB, West RG (eds) Quaternary plant ecology. Blackwell, Oxford, pp 173–189Google Scholar
  8. Birks HH (1984) Late-quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, north-west Scotland. In: Haworth E, Lund JWG (eds) Lake sediments and environmental history. University of Leicester Press, Leicester, pp 377–405Google Scholar
  9. Birks HJB (1986) Late-quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65Google Scholar
  10. Birks HH (2001) Plant macrofossils. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht, pp 49–74Google Scholar
  11. Birks HH (2007) Plant macrofossils introduction. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2,266–2,288CrossRefGoogle Scholar
  12. Birks HJB, Birks HH (1980) Quaternary palaeoecology. Arnold, LondonGoogle Scholar
  13. Birks HH, Birks HJB (2000) Future uses of pollen analysis must include macrofossils. J Biogeogr 27:31–35CrossRefGoogle Scholar
  14. Birks HH, Birks HJB (2003) Reconstructing Holocene climates from pollen and plant macrofossils. In: Mackay A, Batterbee R, Birks HJB et al (eds) Global change in the Holocene. Arnold, London, pp 342–357Google Scholar
  15. Birks HH, Mathewes RW (1978) Studies in the vegetation history of Scotland. V. Late devensian and early flandrian pollen and macrofossil stratigraphy at Abernethy forest, Inverness-shire. New Phytol 80:455–484CrossRefGoogle Scholar
  16. Birks HH, Vorren K-D, Birks HJB (1996) Holocene tree-lines, dendrochronology and palaeoclimate. Paläoklimaforschung 20:1–18Google Scholar
  17. Bjune AE, Birks HJB, Seppä H (2004) Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas 33:211–223CrossRefGoogle Scholar
  18. Brändli UB (1998) Die häufigsten Waldbäume der Schweiz. Ergebnisse aus dem Landesforstinventar 1983-85. Berichte Eidgenöss. Forsch anst. Wald Schnee Landschaft 342Google Scholar
  19. Clayden S, Cwynar L, MacDonald G (1996) Stomate and pollen content of lake sediments from across the tree line on the Taimyr Peninsula, Siberia. Can J Bot 74:1,009–1,015CrossRefGoogle Scholar
  20. Clayden S, Cwynar L, MacDonald G et al (1997) Holocene pollen and stomates from a forest-tundra site on the Taimyr Peninsula, Siberia. Arct Alp Res 29:327–333CrossRefGoogle Scholar
  21. Colombaroli D, Henne PD, Kaltenrieder P et al (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1,346–1,357CrossRefGoogle Scholar
  22. Denton GH, Broecker WS, Alley RB (2006) The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14:14–16Google Scholar
  23. Dunwiddie PW (1987) Macrofossil and pollen representation of coniferous trees in modern sediments from Washington. Ecology 68:1–11CrossRefGoogle Scholar
  24. Eide W, Birks HH, Bigelow NH et al (2006) Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossils and pollen evidence. Veget Hist Archaeobot 15:65–85CrossRefGoogle Scholar
  25. Finsinger W, Tinner W (2007) Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 17:1,119–1,127CrossRefGoogle Scholar
  26. Finsinger W, Tinner W, van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the Southern Alps: a key for understanding its early holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  27. Finsinger W, Lane CS, Van den Brand GJ et al (2011) The lateglacial Quercus expansion in the southern European Alps—rapid vegetation response to a late Allerød climate warming? J Quat Sci 26:694–702CrossRefGoogle Scholar
  28. Firbas F (1949) Spät- und nacheiszeitliche Waldgeschichte Mitteleuropas nördlich der Alpen. Fischer, JenaGoogle Scholar
  29. Fischer F, Schmid-Haas P, Hughes BR (1959) Anzahl und Verteilung der in der Schneedecke angesammelten Fichtensamen. Mitt Eidgenöss Forschanst Wald Schnee Landsch 35:459–479Google Scholar
  30. Froyd C (2005) Fossil stomata, reveal early pine presence in Scotland: implications for postglacial colonization analyses. Ecology 86:579–586CrossRefGoogle Scholar
  31. Gaillard M-J (1984) Etude palynologique de l’Evolution Tardi- et Postglaciaire de la Végétation du Moyen-Pays Romand (Suisse) (Diss Bot), vol 77. Cramer, VaduzGoogle Scholar
  32. Gaillard M-J (1985) Late-glacial and Holocene environments of some ancient lakes in the Western Swiss Plateau. In: Lang G (ed) Swiss lake and Mire Environments during the last 15 000 years (Diss Bot), vol 87. Cramer, Vaduz, pp 273–336Google Scholar
  33. Giesecke T (2013) Changing plant distributions and abundances. In: Elias SA (ed) Encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 854–860CrossRefGoogle Scholar
  34. Giesecke T, Davis B, Brewer S et al (2014) Towards mapping the late quaternary vegetation change of Europe. Veget Hist Archaeobot 23:75–86CrossRefGoogle Scholar
  35. Godwin H (1956) The history of the British flora. A factual basis for phytogeography. Cambridge University Press, CambridgeGoogle Scholar
  36. Gugerli F, Alvarez N, Tinner W (2013) A deep dig—hindsight on Holocene vegetation composition from ancient environmental DNA. Mol Ecol 22:3,433–3,436CrossRefGoogle Scholar
  37. Hansen BCS (1995) Conifer stomate analysis as a palaeoecological tool: an example from the Hudson Bay Lowland. Can J Bot 73:244–252CrossRefGoogle Scholar
  38. Hansen BCS, MacDonald GM, Moser KA (1996) Identifying the tundra-forest border in the stomata record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada. Can J Bot 74:796–800CrossRefGoogle Scholar
  39. Heiri C, Bugmann H, Tinner W et al (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94:206–216CrossRefGoogle Scholar
  40. Henne PD, Elkin CM, Reineking B et al (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38:933–949CrossRefGoogle Scholar
  41. Hess HE, Landolt E, Hirzel R (1976) Flora der Schweiz und angrenzender Gebiete. Birkhäuser, BaselCrossRefGoogle Scholar
  42. Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29CrossRefGoogle Scholar
  43. Hicks S (2006) When no pollen does not mean no trees. Veget Hist Archaeobot 15:253–261CrossRefGoogle Scholar
  44. Hicks S (2007) Pollen methods and studies: surface samples and trapping. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2,529–2,535CrossRefGoogle Scholar
  45. Jensen C, Kuiper JGJ, Vorren K-D (2002) First post-glacial establishment of forest trees: early Holocene vegetation, mollsuc settlement and climate dynamics in central Troms, North Norway. Boreas 31:285–301CrossRefGoogle Scholar
  46. Kaltenrieder P, Tinner W, Ammann B (2005) Zur Langzeitökologie des Lärchen-Arvengürtels in den südlichen Walliser-Alpen. Bot Helv 115:137–154CrossRefGoogle Scholar
  47. Keller F, Lischke H, Mathis T et al (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record. Ecol Model 152:109–127CrossRefGoogle Scholar
  48. Kérry M (2011) Towards the modelling of true species distributions. J Biogeogr 38:617–618CrossRefGoogle Scholar
  49. Lacourse T, Delepine JM, Hodffman EH et al (2012) A 14,000 year vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata. Quat Res 78:572–582CrossRefGoogle Scholar
  50. Lang G (1992) Some aspects of European late- and post-glacial flora history. Acta Bot Fenn 144:1–17Google Scholar
  51. Lang G (1994) Quartäre Vegetationsgeschichte Europas—Methoden und Ergebnisse. Fischer, JenaGoogle Scholar
  52. Lang G (2005) Seen und Moore des Schwarzwaldes. Andrias 16:1–160Google Scholar
  53. Lang G, Tobolski K (1985) Hobschensee—late-glacial and Holocene environments of a lake near the timberline. Diss Bot 87:209–228Google Scholar
  54. Leitner R, Gajewski K (2004) Modern and Holocene stomata records of tree-line variations in northwestern Quebec. Can J Bot-Rev Can Bot 82:726–734CrossRefGoogle Scholar
  55. Lotter AF, Kienast F (1990) Validation of a forest succession model by means of annually laminated sediments. Geol Surv Finl 14:15–31Google Scholar
  56. MacDonald GM (2001) Conifer stomata. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 33–47Google Scholar
  57. Magyari EK, Jakab G, Bálint M et al (2012) Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat Sci Rev 35:116–130CrossRefGoogle Scholar
  58. Markgraf V (1969) Moorkundliche und vegetationsgeschichtliche Untersuchungen an einem Moorsee an der Waldgrenze im Wallis. Bot Jahrb 89:1–63Google Scholar
  59. Mazier F, Nielsen AB, Broström A et al (2012) Signals of tree volume and temperature in a high-resolution record of pollen accumulation rates in northern Finland. J Quat Sci 27:564–574CrossRefGoogle Scholar
  60. Oberdorfer E (1990) Pflanzensoziologische Exkursionsflora. Ulmer, StuttgartGoogle Scholar
  61. Parshall T (2002) Late Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83:1,386–1,398CrossRefGoogle Scholar
  62. Paus A, Velle G, Berge J (2011) The Lateglacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two Lateglacial nunatak lakes. Quat Sci Rev 30:1,780–1,796CrossRefGoogle Scholar
  63. Pidek IA, Svitavska-Svobodova H, Van der Knaap WO et al (2013) Pollen percentage thresholds of Abies alba based on 13-year annual records of pollen deposition in modified Tauber traps: perspectives of application to fossil situations. Rev Palaeobot Palynol 195:26–36CrossRefGoogle Scholar
  64. Pisaric MFJ, Szeicz JM, Karst T et al (2000) Comparison of pollen and conifer stomates as indicators of alpine treeline in northwestern Canadian lake sediments. Can J Bot 78:1,180–1,186Google Scholar
  65. Pisaric MFJ, MacDonald GM, Cwynar LC et al (2001) Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting Late Quaternary fossil pollen assemblages. Arct Antarct Alp Res 33:19–27CrossRefGoogle Scholar
  66. Pisaric MFJ, Holt C, Szeicz JM et al (2003) Holocene treeline dynamics in the mountains of northeastern British Columbia, Canada, inferred from fossil pollen and stomata. Holocene 13:161–173CrossRefGoogle Scholar
  67. Reich PB, Oleksyn J, Modrzynski J (1996) Evidence that longer needle retention of spruce and pine populations at high elevations and high latitudes is largely a phenotypic response. Tree Physiol 16:643–647CrossRefGoogle Scholar
  68. Rösch M (1983) Geschichte der Nussbaumer Seen/Kt. Thurgau und ihrer Umgebung seit dem Ausgang der letzten Eiszeit aufgrund quartärbotanischer, stratigraphischer und sedimentologischer Untersuchungen. Mitt Thurg Naturf Ges 45:3–110Google Scholar
  69. Rösch M (1985) Nussbaumer Seen—spät- und postglaziale Umweltsveränderungen einer Seengruppe im östlichen schweizer Mittelland. Diss Bot 87:337–379Google Scholar
  70. Rudolph K (1930) Grundzüge der nacheiszeitlichen Waldgeschichte Mitteleuropas. Bh Bot Centrbl 47:111–176Google Scholar
  71. Schneider R, Tobolski K (1985) Lago di Ganna—Late-glacial and Holocene environments of a lake in the southern Alps. Diss Bot 87:229–271Google Scholar
  72. Seppä H (2007) Pollen analysis, principles. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2,486–2,497CrossRefGoogle Scholar
  73. Sjögren P, Kirchhefer AJ (2012) Historical legacy of old-growth pine forest in Dividalen, northern Scandes. Int J Biodivers Sci Ecosyst Serv Manag 8:338–350CrossRefGoogle Scholar
  74. Sjögren P, Van der Knaap WO, Huusko A, Van Leeuwen JFN (2008a) Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol 152:200–210CrossRefGoogle Scholar
  75. Sjögren P, Van der Knaap WO, Kaplan J, Van Leeuwen JFN, Ammann B (2008b) A pilot study on pollen representation of mountain valley vegetation in the central Alps. Rev Palaeobot Palynol 149:208–218CrossRefGoogle Scholar
  76. Steiger P (2009) Wälder der Schweiz—Von Lindengrün zu Lärchengold - Vielfalt der Waldbilder und des Waldes der Schweiz. Ott, ThunGoogle Scholar
  77. Sweeney CA (2004) A key for the identification of stomata of the native conifers of Scandinavia. Rev Palaeobot Palynol 128:281–290CrossRefGoogle Scholar
  78. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947CrossRefGoogle Scholar
  79. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549CrossRefGoogle Scholar
  80. Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169CrossRefGoogle Scholar
  81. Tinner W, Ammann B, Germann P (1996) Treeline fluctuations recorded for 12,500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arct Alp Res 28:131–147CrossRefGoogle Scholar
  82. Tinner W, Hubschmid P, Wehrli M et al (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  83. Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffungen der mitteleuropäischen Coniferen. Flora 140:523–533Google Scholar
  84. Van der Knaap WO, Van Leeuwen JFN, Svitavska-Svobodova H, Pidek IA, Kvavadze E, Chichinadze M, Giesecke T, Kaszewski BM, Oberli F, Kalnina L, Pardoe HS, Tinner W, Ammann B (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veget Hist Archaeobot 19:285–307CrossRefGoogle Scholar
  85. Vescovi E, Ravazzi C, Arpeti E et al (2007) Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1,650–1,669CrossRefGoogle Scholar
  86. Von Post L (1924) Some features of the regional history of the forests of southern Sweden in post-arctic time. Geol Fören Stockholm Förhandl 38:384Google Scholar
  87. Watts WA (1973) Rates of change and stability in vegetation in the perspective of long periods of time. In: Birks HJB, West RG (eds) Quaternary plant ecology. Cambridge University Press, Cambridge, pp 195–206Google Scholar
  88. Welten M (1944) Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez. Veröff Geobot Inst Rübel Zürich 21:1–201Google Scholar
  89. Welten M (1982a) Vegetationsgeschichtliche Untersuchungen in den westlichen Schweizer Alpen: Bern-Wallis. Denkschr Schweiz Naturforsch Ges 95:1–104Google Scholar
  90. Welten M (1982b) Pollenanalytische Untersuchungen zur Vegetationsgeschichte des Schweizerischen Nationalparks. Ergeb wiss Untersuch Schweiz Nationalpark 16:3–43Google Scholar
  91. Wick L (2000) Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeogr Palaeoclimatol Palaeoecol 159:231–250CrossRefGoogle Scholar
  92. Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the Central Alps as indicator of Holocene climatic oscillations. Arct Alp Res 29:445–458CrossRefGoogle Scholar
  93. Yu Z (1997) Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils. Rev Palaeobot Palynol 96:241–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Brigitta Ammann
    • 1
    Email author
  • Willem O. van der Knaap
    • 1
  • Gerhard Lang
    • 2
  • Marie-José Gaillard
    • 3
  • Petra Kaltenrieder
    • 1
  • Manfred Rösch
    • 4
  • Walter Finsinger
    • 5
  • Herbert E. Wright
    • 6
  • Willy Tinner
    • 1
  1. 1.Institute of Plant Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Biberach an der RißGermany
  3. 3.Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
  4. 4.Landesamt für DenkmalpflegeHemmenhofenGermany
  5. 5.Centre for Bioarchaeology and Ecology (CBAE – UMR 5059 CNRS/EPHE/UM2)Institut de BotaniqueMontpellierFrance
  6. 6.Limnological Research CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations