Vegetation History and Archaeobotany

, Volume 22, Issue 6, pp 521–530

The European Modern Pollen Database (EMPD) project

  • Basil A. S. Davis
  • Marco Zanon
  • Pamella Collins
  • Achille Mauri
  • Johan Bakker
  • Doris Barboni
  • Alexandra Barthelmes
  • Celia Beaudouin
  • Anne E. Bjune
  • Elissaveta Bozilova
  • Richard H. W. Bradshaw
  • Barbara A. Brayshay
  • Simon Brewer
  • Elisabetta Brugiapaglia
  • Jane Bunting
  • Simon E. Connor
  • Jacques-Louis de Beaulieu
  • Kevin Edwards
  • Ana Ejarque
  • Patricia Fall
  • Assunta Florenzano
  • Ralph Fyfe
  • Didier Galop
  • Marco Giardini
  • Thomas Giesecke
  • Michael J. Grant
  • Jöel Guiot
  • Susanne Jahns
  • Vlasta Jankovská
  • Stephen Juggins
  • Marina Kahrmann
  • Monika Karpińska-Kołaczek
  • Piotr Kołaczek
  • Norbert Kühl
  • Petr Kuneš
  • Elena G. Lapteva
  • Suzanne A. G. Leroy
  • Michelle Leydet
  • José Guiot
  • Susanne Jahns
  • Vlasta Jankovská
  • Stephen Juggins
  • Marina Kahrmann
  • Monika Karpińska-Kołaczek
  • Piotr Kołaczek
  • Norbert Kühl
  • Petr Kuneš
  • Elena G. Lapteva
  • Suzanne A. G. Leroy
  • Michelle Leydet
  • José Antonio López Sáez
  • Alessia Masi
  • Isabelle Matthias
  • Florence Mazier
  • Vivika Meltsov
  • Anna Maria Mercuri
  • Yannick Miras
  • Fraser J. G. Mitchell
  • Jesse L. Morris
  • Filipa Naughton
  • Anne Birgitte Nielsen
  • Elena Novenko
  • Bent Odgaard
  • Elena Ortu
  • Mette Venås Overballe-Petersen
  • Heather S. Pardoe
  • Silvia M. Peglar
  • Irena A. Pidek
  • Laura Sadori
  • Heikki Seppä
  • Elena Severova
  • Helen Shaw
  • Joanna Święta-Musznicka
  • Martin Theuerkauf
  • Spassimir Tonkov
  • Siim Veski
  • W. O. van der Knaap
  • Jacqueline F. N. van Leeuwen
  • Jessie Woodbridge
  • Marcelina Zimny
  • Jed O. Kaplan
Short Communication

Abstract

Modern pollen samples provide an invaluable research tool for helping to interpret the quaternary fossil pollen record, allowing investigation of the relationship between pollen as the proxy and the environmental parameters such as vegetation, land-use, and climate that the pollen proxy represents. The European Modern Pollen Database (EMPD) is a new initiative within the European Pollen Database (EPD) to establish a publicly accessible repository of modern (surface sample) pollen data. This new database will complement the EPD, which at present holds only fossil sedimentary pollen data. The EMPD is freely available online to the scientific community and currently has information on almost 5,000 pollen samples from throughout the Euro-Siberian and Mediterranean regions, contributed by over 40 individuals and research groups. Here we describe how the EMPD was constructed, the various tables and their fields, problems and errors, quality controls, and continuing efforts to improve the available data.

Keywords

Pollen Surface sample Database EPD EMPD Europe 

Supplementary material

334_2012_388_MOESM1_ESM.doc (56 kb)
Supplementary material 1 (DOC 56 kb)
334_2012_388_MOESM2_ESM.pdf (36 kb)
Supplementary material 2 (PDF 35 kb)
334_2012_388_MOESM3_ESM.pdf (62 kb)
Supplementary material 3 (PDF 62 kb)

References

  1. Allen JRM, Watts WA, Huntley B (2000) Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment, the record from Lago Grande di Monticchio, southern Italy. Quat Int 73–74:91–110CrossRefGoogle Scholar
  2. Amami B, Muller SD, Rhazi L, Grillas P, Rhazi M, Bouahim S (2010) Modern pollen–vegetation relationships within a small Mediterranean temporary pool (western Morocco). Rev Palaeobot Palynol 162:213–225CrossRefGoogle Scholar
  3. Andersen ST (1970) The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelse Ser II 96:1–99Google Scholar
  4. Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi M-F, Spessa A, Davis BAS, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J Veg Sci 15:635–646CrossRefGoogle Scholar
  5. Beaudouin C, Suc JP, Escarguel G, Arnaud M, Charmasson S (2007) The significance of pollen signal in present-day marine terrigenous sediments: the example of the Gulf of Lions (western Mediterranean Sea). Geobios (Lyon) 40:159–172CrossRefGoogle Scholar
  6. Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  7. Binney HA, Waller MP, Bunting MJ, Armitage RA (2005) The interpretation of fen carr pollen diagrams: the representation of the dry land vegetation. Rev Palaeobot Palynol 134:197–218CrossRefGoogle Scholar
  8. Binney HA, Gething PW, Nield JM, Sugita S, Edwards ME (2011) Tree line identification from pollen data: beyond the limit? J Biogeogr 38:1,792–1,806Google Scholar
  9. Bjune A, Birks H, Peglar S, Odland A (2010) Developing a modern pollen-climate calibration data set for Norway. Boreas 39:674–688CrossRefGoogle Scholar
  10. Blois J, Goring S, Smith A (2011) Integrating paleoecological databases. Eos 92:48CrossRefGoogle Scholar
  11. Bordon A, Peyron O, Lezine AM, Brewer S, Fouache E (2009) Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quat Int 200:19–30Google Scholar
  12. Bottema S (2001) A note on the pollen representation of ivy (Hedera helix L.). Rev Palaeobot Palynol 117:159–166CrossRefGoogle Scholar
  13. Bradshaw RHW (1981) Modern pollen-representation factors for woods in south-east England. J Ecol 69:45–70CrossRefGoogle Scholar
  14. Brayshay BA, Gilbertson DD, Kent M, Edwards KJ, Wathern P, Weaver RE (2000) Surface pollen-vegetation relationships on the Atlantic seaboard: South Uist, Scotland. J Biogeogr 27:359–378CrossRefGoogle Scholar
  15. Brewer S, Guiot J, Barboni D (2007) Pollen data as climate proxies. In: Elias SA (ed) Encyclopedia of quaternary science, vol 4. Elsevier, New York, pp 2,498–2,510Google Scholar
  16. Broström A, Nielsen AB, Gaillard MJ, Hjelle K, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska A, Räsänen S, Soepboer W, Von Stedingk H, Suutari H, Sugita S (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veget Hist Archaeobot 17:461–478CrossRefGoogle Scholar
  17. Bunting MJ (2002) Detecting woodland remnants in cultural landscapes: modern pollen deposition around small woodlands in northwest Scotland. Holocene 12:291–301CrossRefGoogle Scholar
  18. Carrión JS (2002) A taphonomic study of modern pollen assemblages from dung and surface sediments in arid environments of Spain. Rev Palaeobot Palynol 120:217–232CrossRefGoogle Scholar
  19. Carrión JS, Scott L, Marais E (2006) Environmental implications of pollen spectra in bat droppings from southeastern Spain and potential for palaeoenvironmental reconstructions. Rev Palaeobot Palynol 140:175–186CrossRefGoogle Scholar
  20. Cheddadi R, Yu G, Guiot J, Harrison SP, Prentice IC (1997) The climate of Europe 6000 years ago. Clim Dyn 13:1–9CrossRefGoogle Scholar
  21. Cheddadi R, Lamb HF, Guiot J, Van der Kaars S (1998) Holocene climatic change in Morocco: a quantitative reconstruction from pollen data. Clim Dyn 14:883–890CrossRefGoogle Scholar
  22. Collins PM, Davis BAS, Kaplan JO (2012) The mid-Holocene vegetation of the Mediterranean region and southern Europe, and comparison with the present day. J Biogeogr. doi:10.1111/j.1365-2699.2012.02738.x Google Scholar
  23. Combourieu Nebout NC, Peyron O, Dormoy I, Desprat S, Beaudouin C, Kotthoff U, Marret F (2009) Rapid climatic variability in the west Mediterranean during the last 25,000 years from high resolution pollen data. Clim Past 5:503–521CrossRefGoogle Scholar
  24. Connor SE, Thomas I, Kvavadze EV, Arabuli GJ, Avakov GS, Sagona A (2004) A survey of modem pollen and vegetation along an altitudinal transect in southern Georgia, Caucasus region. Rev Palaeobot Palynol 129:229–250CrossRefGoogle Scholar
  25. Court-Picon M, Buttler A, de Beaulieu JL (2006) Modern pollen/vegetation/land-use relationships in mountain environments: an example from the Champsaur valley (French Alps). Veget Hist Archaeobot 15:151–168CrossRefGoogle Scholar
  26. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408CrossRefGoogle Scholar
  27. Cundill PR, Austin WEN, Davies SE (2006) Modern pollen from the catchment and surficial sediments of a Scottish sea loch (fjord). Grana 45:230–238CrossRefGoogle Scholar
  28. Davis BAS, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1,701–1,716Google Scholar
  29. Djamali M, de Beaulieu JL, Campagne P, Andrieu-Ponel V, Ponel P, Leroy SAG, Akhani H (2009) Modern pollen rain-vegetation relationships along a forest-steppe transect in the Golestan National Park, NE Iran. Rev Palaeobot Palynol 153:272–281CrossRefGoogle Scholar
  30. Ejarque A, Miras Y, Riera S (2011) Pollen and non-pollen palynomorph indicators of vegetation and highland grazing activities obtained from modern surface and dung datasets in the eastern Pyrenees. Rev Palaeobot Palynol 167:123–139CrossRefGoogle Scholar
  31. Elmoslimany AP (1990) Ecological significance of common nonarboreal pollen—examples from drylands of the Middle-East. Rev Palaeobot Palynol 64:343–350CrossRefGoogle Scholar
  32. Erdtman G (1943) An introduction to pollen analysis. Chronica Botanica, WalthamGoogle Scholar
  33. Fernández Freire C, Uriate González A, Vicent García JM, Martínez Navarrete I (2012) Bronze age economies and landscape resources in the Kargaly steppe (Orenburg, Russia). Remote sensing and palynological data for ancient landscape resources modelling. EARSeL eProc 11:87–97Google Scholar
  34. Feurdean A, Klotz S, Mosbrugger V, Wohlfarth B (2008) Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Palaeogeogr Palaeoclim Paleeoecol 260:494–504CrossRefGoogle Scholar
  35. Finsinger W, Heiri O, Valsecchi V, Tinner W, Lotter AF (2007) Modern pollen assemblages as climate indicators in southern Europe. Glob Ecol Biogeogr 16:567–582CrossRefGoogle Scholar
  36. Fossitt JA (1994) Modern pollen rain in the northwest of the British Isles. Holocene 4:365–376CrossRefGoogle Scholar
  37. Fyfe RM, de Beaulieu JL, Binney H, Bradshaw RHW, Brewer S, Le Flao A, Finsinger W, Gaillard MJ, Giesecke T, Gil-Romera G, Grimm EC, Huntley B, Kuneš P, Kühl N, Leydet M, Lotter AF, Tarasov PE, Tonkov S (2009) The European Pollen Database: past efforts and current activities. Veget Hist Archaeobot 18:417–424CrossRefGoogle Scholar
  38. Gachet S, Brewer S, Cheddadi R, Davis B, Gritti E, Guiot J (2003) A probabilistic approach of pollen indicators for plant functional types, an application to the European vegetation at 0 k and 6 k. Glob Ecol Biogeogr 12:103–112CrossRefGoogle Scholar
  39. Gaillard M-J, Sugita S, Bunting J, Dearing J, Bittmann F (2008a) Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover. Veget Hist Archaeobot 17:415–418CrossRefGoogle Scholar
  40. Gaillard M-J, Sugita S, Bunting MJ, Middleton R, Broström A, Caseldine C, Giesecke T, Hellman SEV, Hicks S, Hjelle K, Langdon C, Nielsen A-B, Poska A, Von Stedingk H, Veski S (2008b) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Veget Hist Archaeobot 17:419–443CrossRefGoogle Scholar
  41. Gaillard MJ, Sugita S, Mazier F, Trondman AK, Broström A, Hickler T, Kaplan JO, Kjellström E, Kokfelt U, Kuneš P, Lemmen C, Miller P, Olofsson J, Poska A, Rundgren M, Smith B, Strandberg G, Fyfe R, Nielsen AB, Alenius T, Balakauskas L, Barnekow L, Birks HJB, Bjune A, Björkman L, Giesecke T, Hjelle K, Kalnina L, Kangur M, Van der Knaap WO, Koff T, Lagerås P, Latałowa M, Leydet M, Lechterbeck J, Lindbladh M, Odgaard B, Peglar S, Segerström U, Von Stedingk H, Seppä H (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim Past 6:483–499CrossRefGoogle Scholar
  42. Garreta V, Miller PA, Guiot J, Hely C, Brewer S, Sykes MT, Litt T (2010) A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Clim Dyn 35:371–389CrossRefGoogle Scholar
  43. Gervais BR, MacDonald GM (2001) Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia. Rev Palaeobot Palynol 114:223–237CrossRefGoogle Scholar
  44. Giesecke T, Fontana SL, Van der Knaap WO, Pardoe HS, Pidek IA (2010) From early pollen trapping experiments to the Pollen Monitoring Programme. Veget Hist Archaeobot 19:247–258CrossRefGoogle Scholar
  45. Gritti ES, Gachet S, Sykes MT, Guiot J (2004) An extended probabilistic approach of plant vital attributes: an application to European pollen records at 0 and 6 ka. Glob Ecol Biogeogr 13:519–533CrossRefGoogle Scholar
  46. Guiot J (1985) A method for palaeoclimatic reconstruction in palynology based on multivariate time-series analysis. Géog Phys Quat 39:115–125Google Scholar
  47. Guiot J (1987) Late quaternary climatic-change in France estimated from multivariate pollen time-series. Quat Res 28:100–118CrossRefGoogle Scholar
  48. Guiot J (1990) Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr Palaeoclim Palaeoecol 80:49–69CrossRefGoogle Scholar
  49. Guiot J, Pons A, de Beaulieu JL, Reille M (1989) A 140,000-year continental climate reconstruction from 2 European pollen records. Nature 338:309–313CrossRefGoogle Scholar
  50. Guiot J, Harrison SP, Prentice IC (1993) Reconstruction of Holocene precipitation patterns in Europe using pollen and lake-level data. Quat Res 40:139–149CrossRefGoogle Scholar
  51. Guiot J, Cheddadi R, Prentice IC, Jolly D (1996) A method of biome and land surface mapping from pollen data: application to Europe 6000 years ago. Palaeoclimates 1:311–324Google Scholar
  52. Haslett J, Whiley M, Bhattacharya S, Salter-Townshend M, Wilson SP, Allen JRM, Huntley B, Mitchell FJG (2006) Bayesian palaeoclimate reconstruction. J R Stat Soc Ser A 169:395–430CrossRefGoogle Scholar
  53. Hjelle KL (1998) Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway. Veget Hist Archaeobot 7:79–96CrossRefGoogle Scholar
  54. Huntley B (1990) Dissimilarity mapping between fossil and contemporary pollen spectra in Europe for the past 13,000 years. Quat Res 33:360–376CrossRefGoogle Scholar
  55. Huntley B (1992) Pollen-climate response surfaces and the study of climate change. In: Gray JM (ed) Applications of quaternary research. Quaternary Research Association, London, pp 73–106Google Scholar
  56. Huntley B (1993) The use of climate response surfaces to reconstruct palaeoclimate from quaternary pollen and plant macrofossil data. Phil Trans R Soc Lond Ser B 341:215–223CrossRefGoogle Scholar
  57. Huntley B (1994) Late Devensian and Holocene paleoecology and paleoenvironments of the Morrone Birkwoods, Aberdeenshire, Scotland. J Quat Sci 9:311–336CrossRefGoogle Scholar
  58. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  59. Huntley B, Prentice IC (1988) July temperatures in Europe from pollen data, 6000 years before present. Science 241:687–690CrossRefGoogle Scholar
  60. Kelly MG, Huntley B (1991) An 11000-year record of vegetation and environment from Lago-Di-Martignano, Latium, Italy. J Quat Sci 6:209–224CrossRefGoogle Scholar
  61. Klotz S, Guiot J, Mosbrugger V (2003) Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen. Global Planet Change 36:277–294CrossRefGoogle Scholar
  62. Leroy SAG, Boyraz S, Gurbuz A (2009) High-resolution palynological analysis in Lake Sapanca as a tool to detect recent earthquakes on the North Anatolian Fault. Quat Sci Rev 28:2616–2632CrossRefGoogle Scholar
  63. Lisitsyna OV, Giesecke T, Hicks S (2011) Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev Palaeobot Palynol 166:311–324CrossRefGoogle Scholar
  64. Lisitsyna O, Hicks S, Huusko A (2012) Do moss samples, pollen traps and modern lake sediments all collect pollen in the same way? A comparison from the forest limit area of northernmost Europe. Veget Hist Archaeobot 21:187–199CrossRefGoogle Scholar
  65. López-Sáez JA, Alba-Sánchez F, López-Merino L, Pérez-Díaz S (2010) Modern pollen analysis: a reliable tool for discriminating Quercus rotundifolia communities in Central Spain. Phytocoenologia 40:57–72CrossRefGoogle Scholar
  66. Mazier F, Galop D, Brun C, Buttler A (2006) Modern pollen assemblages from grazed vegetation in the western Pyrenees, France: a numerical tool for more precise reconstruction of past cultural landscapes. Holocene 16:91–103CrossRefGoogle Scholar
  67. Mazier F, Galop D, Gaillard MJ, Rendu C, Cugny C, Legaz A, Peyron O, Buttler A (2009) Multidisciplinary approach to reconstructing local pastoral activities: an example from the Pyrenean Mountains (Pays Basqueq). Holocene 19:171–188CrossRefGoogle Scholar
  68. Miras Y (2009) L’étude des relations entre végétation et pluie pollinique actuelle sur le plateau de Millevaches (Limousin, France): outil pour une meilleure caractérisation pollenanalytique des formes paysagères et des pratiques agrosylvopastorales. Rev Sci Nat d’Auvergne 73:71–105Google Scholar
  69. Mokhova L, Tarasov P, Bazarova V, Klimin M (2009) Quantitative biome reconstruction using modern and late Quaternary pollen data from the southern part of the Russian Far East. Quat Sci Rev 28:2,913–2,926Google Scholar
  70. Naughton F, Sanchez-Goñi M-F, Desprat S, Turon JL, Duprat J, Malaize B, Joli C, Cortijo E, Drago T, Freitas MC (2007) Present-day and past (last 25,000 years) marine pollen signal off western Iberia. Mar Micropaleontol 62:91–114CrossRefGoogle Scholar
  71. Ninyerola M, Saez L, Perez-Obiol R (2007) Relating postglacial relict plants and Holocene vegetation dynamics in the Balearic Islands through field surveys, pollen analysis and GIS modeling. Plant Biosyst 141:292–304CrossRefGoogle Scholar
  72. Ortu E, Klotz S, Brugiapaglia E, Caramiello R, Siniscalco C (2010) Elevation-induced variations of pollen assemblages in the North-western Alps: an analysis of their value as temperature indicators. CR Biol 333:825–835CrossRefGoogle Scholar
  73. Pardoe HS, Giesecke T, Van der Knaap WO, Svitavská-Svobodová H, Kvavadze EV, Panajiotidis S, Gerasimidis A, Pidek IA, Zimny M, Święta-Musznicka J, Latałowa M, Noryśkiewicz AM, Bozilova E, Tonkov S, Filipova-Marinova MV, Van Leeuwen JFN, Kalnina L (2010) Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. Veget Hist Archaeobot 19:271–283CrossRefGoogle Scholar
  74. Pearman PB, Randin CF, Broennimann O, Vittoz P, Van der Knaap WO, Engler R, Le Lay G, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369CrossRefGoogle Scholar
  75. Pelanková B, Chytry M (2009) Surface pollen-vegetation relationships in the forest-steppe, taiga and tundra landscapes of the Russian Altai Mountains. Rev Palaeobot Palynol 157:253–265CrossRefGoogle Scholar
  76. Pelanková B, Kuneš P, Chytry M, Jankovská V, Ermakov N, Svobodová-Svitavská H (2008) The relationships of modern pollen spectra to vegetation and climate along a steppe–forest-tundra transition in southern Siberia, explored by decision trees. Holocene 18:1,259–1,271Google Scholar
  77. Petersen GM (1983) Recent pollen spectra and zonal vegetation in the western USSR. Quat Sci Rev 2:281–321CrossRefGoogle Scholar
  78. Peyron O, Guiot J, Cheddadi R, Tarasov P, Reille M, de Beaulieu JL, Bottema S, Andrieu V (1998) Climatic reconstruction in Europe for 18000 yr b.p. from pollen data. Quat Res 49:183–196CrossRefGoogle Scholar
  79. Peyron O, Begeot C, Brewer S, Heiri O, Magny M, Millet L, Ruffaldi P, Van Campo E, Yu G (2005) Late-glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids. Quat Res 64:197–211CrossRefGoogle Scholar
  80. Pisaric MFJ, MacDonald GM, Cwynar LC, Velichko AA (2001) Modern pollen and conifer stomates from north-central Siberian lake sediments: Their use in interpreting late quaternary fossil pollen assemblages. Arct Antarct Alp Res 33:19–27CrossRefGoogle Scholar
  81. Prentice IC (1983) Pollen mapping of regional vegetation patterns in South and Central Sweden. J Biogeogr 10:441–454CrossRefGoogle Scholar
  82. Prentice IC (1985) Pollen representation, source area, and basin size—toward a unified theory of pollen analysis. Quat Res 23:76–86CrossRefGoogle Scholar
  83. Prentice I, Jolly D (2000) Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J Biogeogr 27:507–519CrossRefGoogle Scholar
  84. Prentice IC, Guiot J, Huntley B, Jolly D, Cheddadi R (1996) Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn 12:185–194CrossRefGoogle Scholar
  85. Salonen JS, Seppä H, Valiranta M, Jones VJ, Self A, Heikkila M, Kultti S, Yang HD (2011) The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quat Res 75:501–511CrossRefGoogle Scholar
  86. Seppä H, Birks HJB, Odland A, Poska A, Veski S (2004) A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. J Biogeogr 31:251–267CrossRefGoogle Scholar
  87. Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244CrossRefGoogle Scholar
  88. Tarasov PE, Cheddadi R, Guiot J, Bottema S, Peyron O, Belmonte J, Ruiz-Sanchez V, Saadi F, Brewer S (1998a) A method to determine warm and cool steppe biomes from pollen data; application to the Mediterranean and Kazakhstan regions. J Quat Sci 13:335–344CrossRefGoogle Scholar
  89. Tarasov PE, Webb T, Andreev AA, Afanas’eva NB, Berezina NA, Bezusko LG, Blyakharchuk TA, Bolikhovskaya NS, Cheddadi R, Chernavskaya MM, Chernova GM, Dorofeyuk NI, Dirksen VG, Elina GA, Filimonova LV, Glebov FZ, Guiot J, Gunova VS, Harrison SP, Jolly D, Khomutova VI, Kvavadze EV, Osipova IM, Panova NK, Prentice IC, Saarse L, Sevastyanov DV, Volkova VS, Zernitskaya VP (1998b) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1,029–1,053Google Scholar
  90. Tarasov P, Williams JW, Andreev A, Nakagawa T, Bezrukova E, Herzschuh U, Igarashi Y, Müller S, Werner K, Zheng Z (2007) Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data. Earth Planet Sci Lett 264:284–298CrossRefGoogle Scholar
  91. Tonkov S, Hicks S, Bozilova E, Atanassova J (2001) Pollen monitoring in the central Rila Mountains, Southwestern Bulgaria: comparisons between pollen traps and surface samples for the period 1993–1999. Rev Palaeobot Palynol 117:167–182CrossRefGoogle Scholar
  92. Vermoere M, Vanhecke L, Waelkens M, Smets E (2003) Modern and ancient olive stands near Sagalassos (south-west Turkey) and reconstruction of the ancient agricultural landscape in two valleys. Glob Ecol Biogeogr 12:217–236CrossRefGoogle Scholar
  93. Waller MP, Binney HA, Bunting MJ, Armitage RA (2005) The interpretation of fen carr pollen diagrams: pollen-vegetation relationships within the fen carr. Rev Palaeobot Palynol 133:179–202CrossRefGoogle Scholar
  94. Waller MP, Grant M, Bunting MJ (2012) Modern pollen studies from coppiced woodlands and their implications for the detection of woodland management in Holocene pollen records. Rev Palaeobot Palynol 187:11–28CrossRefGoogle Scholar
  95. Wu HB, Guiot JL, Brewer S, Guo ZT (2007) Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim Dyn 29:211–229CrossRefGoogle Scholar
  96. Zhao Y, Sayer CD, Birks HH, Hughes M, Peglar SM (2006) Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake. J Paleolimnol 35:335–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Basil A. S. Davis
    • 1
  • Marco Zanon
  • Pamella Collins
  • Achille Mauri
  • Johan Bakker
  • Doris Barboni
  • Alexandra Barthelmes
  • Celia Beaudouin
  • Anne E. Bjune
  • Elissaveta Bozilova
  • Richard H. W. Bradshaw
  • Barbara A. Brayshay
  • Simon Brewer
  • Elisabetta Brugiapaglia
  • Jane Bunting
  • Simon E. Connor
  • Jacques-Louis de Beaulieu
  • Kevin Edwards
  • Ana Ejarque
  • Patricia Fall
  • Assunta Florenzano
  • Ralph Fyfe
  • Didier Galop
  • Marco Giardini
  • Thomas Giesecke
  • Michael J. Grant
  • Jöel Guiot
  • Susanne Jahns
  • Vlasta Jankovská
  • Stephen Juggins
  • Marina Kahrmann
  • Monika Karpińska-Kołaczek
  • Piotr Kołaczek
  • Norbert Kühl
  • Petr Kuneš
  • Elena G. Lapteva
  • Suzanne A. G. Leroy
  • Michelle Leydet
  • José Guiot
  • Susanne Jahns
  • Vlasta Jankovská
  • Stephen Juggins
  • Marina Kahrmann
  • Monika Karpińska-Kołaczek
  • Piotr Kołaczek
  • Norbert Kühl
  • Petr Kuneš
  • Elena G. Lapteva
  • Suzanne A. G. Leroy
  • Michelle Leydet
  • José Antonio López Sáez
  • Alessia Masi
  • Isabelle Matthias
  • Florence Mazier
  • Vivika Meltsov
  • Anna Maria Mercuri
  • Yannick Miras
  • Fraser J. G. Mitchell
  • Jesse L. Morris
  • Filipa Naughton
  • Anne Birgitte Nielsen
  • Elena Novenko
  • Bent Odgaard
  • Elena Ortu
  • Mette Venås Overballe-Petersen
  • Heather S. Pardoe
  • Silvia M. Peglar
  • Irena A. Pidek
  • Laura Sadori
  • Heikki Seppä
  • Elena Severova
  • Helen Shaw
  • Joanna Święta-Musznicka
  • Martin Theuerkauf
  • Spassimir Tonkov
  • Siim Veski
  • W. O. van der Knaap
  • Jacqueline F. N. van Leeuwen
  • Jessie Woodbridge
  • Marcelina Zimny
  • Jed O. Kaplan
  1. 1.ARVE Group, School of Architecture, Civil & Environmental EngineeringLausanneSwitzerland

Personalised recommendations