Vegetation History and Archaeobotany

, Volume 22, Issue 5, pp 367–380 | Cite as

Vegetation dynamics during the early to mid-Holocene transition in NW Malta, human impact versus climatic forcing

  • Morteza Djamali
  • Belinda Gambin
  • Nick Marriner
  • Valérie Andrieu-Ponel
  • Timmy Gambin
  • Emmanuel Gandouin
  • Sandro Lanfranco
  • Frédéric Médail
  • Daniel Pavon
  • Philippe Ponel
  • Christophe Morhange
Original Article


A pollen diagram was constructed for the early- to mid-Holocene transition (ca. 7350–5600 cal. b.p./5400–3650 b.c.) from the Burmarrad ria located in NW Malta. The vegetation at ca. 7350–6960 cal. b.p./5400–5010 b.c. was characterized by an almost tree-less steppe-like open landscape. Early Holocene dry climatic conditions were most probably due to intensification of the subtropical monsoon circulation that strengthened the subtropical anticyclonic descent over the central Mediterranean and blocked the penetration of humid air masses from the North Atlantic Ocean. At ca. 6950 cal. b.p./5000 b.c., the steppe-like vegetation was suddenly replaced by a Mediterranean evergreen forest or dense scrub dominated by Pistacia cf. lentiscus trees. This event, which has simultaneously been recorded in southern Sicily, was most probably caused by the southward shift of the ITCZ permitting the eastward movement of the North Atlantic cyclonic systems. Traces of human activities are evident in the pollen diagram since the beginning of the record but become more pronounced from the onset of the Temple Cultural Phase at ca. 6050 cal. b.p./4100 b.c. with a gradual decline of tree pollen. We suggest that the early- to mid-Holocene vegetation transformation was mainly controlled by a regional climatic change that occurred in a landscape only slightly impacted by human activities.


Pollen analysis Monsoon intensification Neolithic Temple cultural phase Mediterranean Evergreen Pistacia 



This study was supported by the PALEOMED project (ANR 09-BLAN-0323-204 01) financed by the French National Research Agency. The first author wishes to thank Laurent Londeix, Maria Sanchez Goñi, Jean-Louis Turon, and Frédérique Eynaud from EPOC, for their hospitality and valuable advice on dinoflagellate identification and scientific discussions during his research stay at the University of Bordeaux in January 2011. We are also thankful to Willy Tinner for his invaluable comments on the BM1 pollen diagram and Arne Saatkamp for his assistance with botanical interpretation of the diagram. Constructive and thoughtful comments of the two reviewers of this paper are greatly appreciated.


  1. Auguier J (1966) Flore des bryophytes. Lechevalier, ParisGoogle Scholar
  2. Ben Tiba B, Reille M (1982) Recherches pollenanalytiques dans les montagnes de Kroumirie (Tunisie septentrionale): premiers résultats. Ecol Mediterr 8:75–86Google Scholar
  3. Benslama M, Andrieu-Ponel V, Guiter F, Reille M, Migliore J, de Beaulieu J-L, Djamali M (2010) Nouvelles contributions à l’histoire tardiglaciaire et holocène de la végétation en Algérie: analyses polliniques de deux profils sédimentaires du complexe humide d’El-Kala. CR Biol 333:744–754CrossRefGoogle Scholar
  4. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  5. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518CrossRefGoogle Scholar
  6. Blouet B (2007) The story of Malta, revised edn. Allied Publications, MaltaGoogle Scholar
  7. Bonanno A (2005) Malta, Phoenician, Punic and Roman. Midsea Books Ltd., MaltaGoogle Scholar
  8. Brodersen KP, Lindegaard C (1999) Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshw Biol 42:143–157CrossRefGoogle Scholar
  9. Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267CrossRefGoogle Scholar
  10. Brodin YW (1986) The postglacial history of Lake Flarken, southern Sweden; interpreted from subfossil insect remains. Internat Rev Gesamt Hydrobiol 71:371–432CrossRefGoogle Scholar
  11. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from late-glacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1,723–1,741Google Scholar
  12. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae larvae in palaeoecology. QRA Technical Guide No 10. Quat Res Ass, LondonGoogle Scholar
  13. Buskens RFM (1987) The chironomid assemblages in shallow lentic waters differing in acidity, buffering capacity and trophic level in the Netherlands. Entomol Scand Suppl 29:217–224Google Scholar
  14. Calò C, Henne PD, Curry B, Magny M, Vescovi E, La Mantia T, Pasta S, Vannière B, Tinner W (2012) Spatio-temporal patterns of Holocene environmental change in southern Sicily. Palaeogeogr Palaeoclimatol Palaeoecol 323–325:110–122CrossRefGoogle Scholar
  15. Carrión JS, Navarro C (2002) Cryptogam spores and other non-pollen microfossils as sources of palaeoecological information: case-studies from Spain. Annal Bot Fin 39:1–14Google Scholar
  16. Cassar C (2000) A concise history of Malta, 2nd edn. Mivera Publications Ltd., MaltaGoogle Scholar
  17. Cassar LF, Conrad E, Schembri PJ (2007) The Maltese Archipelago. In: Vogiatzakis IN, Pungetti GA, Manion M (eds) Mediterranean island landscapes. Landscape series No 9, pp 297–322Google Scholar
  18. Cugny C (2011) Apports des microfossiles non-polliniques à l’histoire du pastoralisme sur le versant nord Pyrénéen entre référentiels actuels et reconstitution du passé. PhD thesis, Université Toulouse 2 Le MirailGoogle Scholar
  19. Díaz Lifante Z, Valdés B (1994) Lectotypification of Asphodelus ramosus (Asphodelaceae), a misunderstood Linnaean name. Taxon 43:245–251CrossRefGoogle Scholar
  20. Djamali M, Akhani H, Andrieu-Ponel V, Bracconnot P, Brewer S, de Beaulieu J-L, Fleitmann D, Fleury J, Gasse F, Guibal F, Jackson ST, Lézine A-M, Médail M, Ponel P, Roberts N, Stevens L (2010) Indian Summer Monsoon variations could have affected the early Holocene woodland expansion in the Near East. Holocene 20:813–820CrossRefGoogle Scholar
  21. Drescher-Schneider R, de Beaulieu J-L, Magny M, Walter-Simonnet AV, Bossuet G, Millet L et al (2007) Vegetation history, climate and human impact over the last 15 000 years at Lago dell’Accesa (Tuscany, Central Italy). Veget Hist Archaeobot 16:279–299CrossRefGoogle Scholar
  22. Emeis K-C (2007) Sapropels. In: Gornitz V (ed) Encyclopedia of climatology and ancient environments. Encyclopaedia of earth sciences series, part 18, pp 876–877Google Scholar
  23. Fenech K (2007) Human induced changes in the environment and landscape of the Maltese Islands from the Neolithic to the 15th century AD. BAR Internat Ser 1,682, OxfordGoogle Scholar
  24. Fleitmann D, Burns SJ, Mangini A, Mudlesee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  25. Gambin T (2005) The maritime landscapes of Malta from the Roman period to the Middle Ages. Unpublished PhD thesis, University of Bristol, BristolGoogle Scholar
  26. Gandouin E, Maasri A, Van Vliet-Lanoë B, Franquet E (2006) Chironomid (Insecta: Diptera) assemblages from a gradient of lotic and lentic waterbodies in river floodplains of France: a methodological tool for palaeoecological applications. J Paleolimnol 35:149–166CrossRefGoogle Scholar
  27. Gandouin E, Ponel P, Andrieu-Ponel V, Guiter F, de Beaulieu J-L, Djamali M, Franquet E, van Vliet-Lanoë B, Alvitre M, Meurisse M, Brocandel M, Brulhet J (2009) 10,000 years of vegetation history of the Aa palaeoestuary, St-Omer Basin, northern France. Rev Palaeobot Palynol 156:307–318CrossRefGoogle Scholar
  28. García-Fayos P, Verdú M (1998) Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecol 19:357–366CrossRefGoogle Scholar
  29. Grech CF (2001) A forest history of the Maltese islands to AD 1800. Unpublished PhD thesis, University of Aberdeen, AberdeenGoogle Scholar
  30. Grimm EC (1987) Coniss: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  31. Grimm EC (2004–2005) TILIA and TGView software, version 2.0.2. Illinois State University, Springfield, USAGoogle Scholar
  32. Grove AT, Rackham O (2001) The nature of Mediterranean Europe; an ecological history. Yale University Press, LondonGoogle Scholar
  33. Haas J-N (1996) Palaeoecological indicators found in pollen preparations from Holocene freshwater lake sediments. Rev Palaeobot Palynol 91:371–382CrossRefGoogle Scholar
  34. Haslam SM, Sell PD, Wolseley PA (1977) A flora of the Maltese Islands. Malta University Press, MsidaGoogle Scholar
  35. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstruction: an example using subfossil chironomids. J Paleolimnol 26:343–350CrossRefGoogle Scholar
  36. Hofmann W (1984) Stratigraphie subfossiler Cladocera (Crustacea) und Chironomidae (Diptera) in zwei Sedimentprofilen des Meerfelder Maares. Cour Forsch-Inst Senckenberg 65:67–80Google Scholar
  37. Hunt CO (1997) Quaternary deposits in the Maltese Islands: a microcosm of environmental change in Mediterranean lands. Geo J 41:101–109Google Scholar
  38. Hunt CO, Schembri PJ (1997) Quaternary environments and biogeography of the Maltese Islands. In: Mifsud A, Savona Ventura C (eds) Facets of Maltese prehistory. The Prehistoric Society of Malta, Malta, pp 41–75Google Scholar
  39. Hunt CO, Brooks I, Meneely J, Brown D, Buzaian A, Barker G (2011) The Cyrenaican Prehistory Project 2011: Late-Holocene environments and human activity from a cave fill in Cyrenaica, Libya. Libyan Stud 42:77–87Google Scholar
  40. Incarbona A, Di Stefano E, Patti B, Pelosi N, Bonomo S, Mazzola S, Sprovieri R, Tranchida G, Zgozi S, Bonnano A (2008) Holocene millennial-scale variations in the Sicily Channel (Mediterranean Sea). Paleoceanogr 23:PA3204Google Scholar
  41. Jordano P (1988) Polinización y variabilidad de la producción de semillas en Pistacia lentiscus L. (Anacardiaceae). Anales del Jardín Botánico de Madrid 45:213–231Google Scholar
  42. Jordano P (1989) Pre-dispersal biology of Pistacia lentiscus (Anacardiaceae): cumulative effects on seed removal by birds. Oikos 55:375–386CrossRefGoogle Scholar
  43. Klink AG (2002) Determineersleutel voor de larven van de in Nederland voorkomende soorten Polypedilum. Concept uitgave STOWA 06Google Scholar
  44. Klink AG, Moller Pillot HKM (2003) Chironomidae larvae. Key to the higher taxa and species of the lowlands of Northwestern Europe. World Biodiversity Database CD-ROM series. Expert Center for Taxonomic Identification, University of Amsterdam, AmsterdamGoogle Scholar
  45. Lanfranco E (1995) The vegetation of the Maltese Islands. In: Giusti F, Manganelli G, Schembri PJ (eds) The non-marine molluscs of the Maltese Islands. Museo Regionale di Scienze Naturali, Torino, pp 27–29Google Scholar
  46. Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295CrossRefGoogle Scholar
  47. Magny M, Vannière B, de Beaulieu J-L, Bégeot C, Heiri O, Millet O et al (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26:1,951–1,964Google Scholar
  48. Magny M, Vannière B, Calo C, Millet L, Leroux A, Peyron O, Zanchetta G, La Mantia T, Tinner W (2011) Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quat Sci Rev 30:2,459–2,475Google Scholar
  49. Magny M, Peyron O, Sadori L, Ortu E, Zanchetta G, Vannière B, Tinner W (2012) Contrasting patterns of precipitation seasonality during the Holocene in the south- and north-central Mediterranean. J Quat Sci 27:290–296CrossRefGoogle Scholar
  50. Magri D, Sadori L (1999) Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico, central Italy. Veget Hist Archaeobot 8:247–260CrossRefGoogle Scholar
  51. Malone C, Stoddart S, Trump D, Bonanno A, Gouder T, Pace A (2009) Mortuary customs in prehistoric Malta: Excavations at the Brochtorff Circle at Xaghra, Gozo (1987–1994). McDonald Institute Monographs, McDonald Institute for Archaeological Research, CambridgeGoogle Scholar
  52. Martínez-Pallé E, Aronne G (2000) Reproductive cycle of Pistacia lentiscus (Anacardiaceae) in Southern Italy. Plant Biosyst 134:365–371CrossRefGoogle Scholar
  53. Mercuri AM, Sadori L, Uzquiano Ollero P (2011) Mediterranean and north-African cultural adaptations to mid-Holocene environmental and climatic changes. Holocene 21:189–206CrossRefGoogle Scholar
  54. Metcalfe CR (1966) Report on the botanical determination of charcoal samples. In: Trump DH (ed) Skorba: excavations carried out on behalf of the National Museum of Malta, 1961–1963. Reports of the Research Committee of the Society of Antiquaries of London, Appendix V. The Society of Antiquaries, London and the National Museum of MaltaGoogle Scholar
  55. Moller Pillot HKM, Buskens RFM (1990) De larven des Nederlandse Chironomidae (Diptera). Deel 1C. autoekologie en werspreiding. Nederlandse faunistische Medelingen 1CGoogle Scholar
  56. Moog O (1995) Fauna Aquatica Austriaca. Abteilung für Hydrobiologie. Fischereiwirtschaft und Aquakultur der Universität für Bodenkultur, WienGoogle Scholar
  57. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  58. Mouterde P (1966) La nouvelle flore du Liban et de la Syrie. Tome Premier, Editions de l’Imprimerie Catholique, BayrouthGoogle Scholar
  59. Mudie PJ, Leroy SAG, Marret F, Gerasimenko N, Kholeif SEA, Sapelko T, Filipova-Marinova M (2011) Nonpollen palynomorphs: indicators of salinity and environmental change in the Caspian-Black Sea-Mediterranean corridor. The Geological Society of America Special Paper 473:1–27CrossRefGoogle Scholar
  60. Noti R, Van Leeuwen JFN, Colombaroli D, Vescovi E, Pasta S, La Mantia T, Tinner W (2009) Mid- and late-Holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, Italy. Veget Hist Archaeobot 18:371–387CrossRefGoogle Scholar
  61. Palacio S, Milla R, Montserrat-Martí G (2005) A phenological hypothesis on the thermophilous distribution of Pistacia lentiscus L. Flora 200:527–534CrossRefGoogle Scholar
  62. Pantaléon-Cano J, Yll E-I, Pérez-Obiol R, Roure JM (2003) Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). Holocene 13:109–119CrossRefGoogle Scholar
  63. Pantis J, Margaris NS (1988) Can systems dominated by asphodels be considered as semi-deserts? Int J Biomet 32:87–91CrossRefGoogle Scholar
  64. Pérez-Obiol R, Jalut G, Julià R, Pèlachs A, Iriarte MJ, Otto T, Hernández-Beloqui B (2011) Mid-Holocene vegetation and climatic history of the Iberian Peninsula. Holocene 21:75–93CrossRefGoogle Scholar
  65. Pinder LCV, Reiss F (1983) The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region. Keys and diagnoses. Entomol Scand Suppl 19:293–435Google Scholar
  66. Pons A (1981) The history of the mediterranean shrublands. In: Di Castri F, Goodall DW, Spetch RL (eds) Mediterranean-type shrublands. Elsevier, Amsterdam, pp 131–138Google Scholar
  67. Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier, ParisGoogle Scholar
  68. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie, MarseilleGoogle Scholar
  69. Reille M (1995) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie-Suppl 1, MarseilleGoogle Scholar
  70. Reille M (1998) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de botanique historique et de palynologie-Suppl 2, MarseilleGoogle Scholar
  71. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, Van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1,111–1,150Google Scholar
  72. Remane A, Schlieper C (1958) Die Biologie des Brackwassers. Die Binnengewässer, 22, StuttgartGoogle Scholar
  73. Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) Boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobotanica 12:3–311Google Scholar
  74. Rivas-Martínez S, Penas A, Diaz TE (2004a) Bioclimatic map of Europe: bioclimates. Cartographic Service, University of León, LeónGoogle Scholar
  75. Rivas-Martínez S, Penas A, Diaz TE (2004b) Bioclimatic map of Europe: thermoclimatic belts. Cartographic Service, University of León, LeónGoogle Scholar
  76. Roberts N, Brayshaw D, Kuzucuoğlu C, Perez R, Sadori L (2011) The mid-Holocene climatic transition in the Mediterranean: causes and consequences. Holocene 21:3–13CrossRefGoogle Scholar
  77. Rodwell M, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J Roy Meteorol Soc 122:1,385–1,404Google Scholar
  78. Rossaro B (1991) Chironomids and water temperature. Aquatic Insects 13:87–98CrossRefGoogle Scholar
  79. Sadori L, Narcisi B (2001) The Postglacial record of environmental history from Lago di Pergusa, Sicily. Holocene 11:655–670CrossRefGoogle Scholar
  80. Sadori L, Zanchetta G, Giardini M (2008) Last Glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, Southern Italy) as inferred by pollen, microcharcoal, and stable isotopes. Quat Int 181:4–14CrossRefGoogle Scholar
  81. Sadori L, Jahns S, Peyron O (2011) Mid-Holocene vegetation history of the central Mediterranean. Holocene 21:117–129CrossRefGoogle Scholar
  82. Saether OA (1979) Chironomid communities as water quality indicators. Holarctic Ecol 2:65–74Google Scholar
  83. Sangiorgi F, Capotondi L, Combourieu Nebout N, Vigliotti L, Brinkhuis H, Giunta S, Lotter AF, Morigi C, Negri A, Reichart G-J (2003) Holocene seasonal sea-surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach. J Quat Sci 18:723–732CrossRefGoogle Scholar
  84. Schembri PJ (1997) The Maltese Islands: climate, vegetation, and landscape. GeoJournal 41:115–125CrossRefGoogle Scholar
  85. Sérgio C (2004) O. Anthocerotales. In: Casas C, Brugués M, Cros RM (eds) Flora dels briòfits dels països Catalans, II. Hepàtiques I Anthocerotes. Institut d’Estudis Catalans, Barcelona, pp 120–122Google Scholar
  86. Stambouli-Essassi S, Roche E, Bouzid S (2007) Evolution de la végétation et du climat dans le Nord-ouest de la Tunisie au cours des 40 derniers millénaires. Geo-Eco-Trop 31:171–214Google Scholar
  87. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  88. Tinner W, Van Leeuwen FN, Colombaroli D, Vescovi E, Van der Knaap WO, Henne PD, Pasta S, D’Angelo S, La Mantia T (2009) Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat Sci Rev 28:1,498–1,510Google Scholar
  89. Tourenq JN (1975) Recherches écologiques sur les Chironomides (Diptera) de Camargue. Unpubl. Thèse doctorat d’état thesis, Université de ToulouseGoogle Scholar
  90. Trump D (1966) Skorba. Reports of the research committee of the society of antiquaries of London 22, OxfordGoogle Scholar
  91. Trump D (2002) Malta, prehistory and temples. Midsea Books Ltd., MaltaGoogle Scholar
  92. Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2,042-2,066Google Scholar
  93. Van Geel B, Aproot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329CrossRefGoogle Scholar
  94. Van Zeist W, Bottema S (1977) Palynological investigations in western Iran. Palaeohist 19:19–85Google Scholar
  95. Vannière B, Power MJ, Roberts N, Tinner W, Carrion J, Magny M, Bartlein P, and data contributors (2011) Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). Holocene 21:53–73Google Scholar
  96. Verdú M, García-Fayos P (2002) Ecología reproductive de Pistacia lentiscus L. (Anacardiaceae): un anacronismo evolutivo en el matorral mediterráneo. Revista Chilena de Historia Natural 75:57–65CrossRefGoogle Scholar
  97. Watson CS (1996) The vegetational history of the northern Apennines, Italy: information from three new sequences and a review of regional vegetational change. J Biogeogr 23:805–841CrossRefGoogle Scholar
  98. Weber HC, Kendzior B (2006) Flora of the Maltese Islands, a field guide. Margraf Publishers, WeikersheimGoogle Scholar
  99. Wright HE Jr, McAndrews JH, van Zeist W (1967) Modern pollen rain in western Iran, and its relation to plant geography and Quaternary vegetational history. J Ecol 55:415–443CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Morteza Djamali
    • 1
  • Belinda Gambin
    • 1
  • Nick Marriner
    • 2
  • Valérie Andrieu-Ponel
    • 1
  • Timmy Gambin
    • 3
  • Emmanuel Gandouin
    • 1
  • Sandro Lanfranco
    • 4
  • Frédéric Médail
    • 1
  • Daniel Pavon
    • 1
  • Philippe Ponel
    • 1
  • Christophe Morhange
    • 2
  1. 1.IMBE–UMR CNRS 7263/IRD/Aix-Marseille Université 237, Europôle Méditerranéen de l’ArboisAix-en-Provence Cedex 04France
  2. 2.CEREGE–UMR 7330 Aix-Marseille Université, CNRS–Institut PYTHEAS, Europôle Méditerranéen de l’ArboisAix-en-Provence Cedex 04France
  3. 3.Department of Classics and ArchaeologyUniversity of MaltaMsidaMalta
  4. 4.Department of BiologyUniversity of MaltaMsidaMalta

Personalised recommendations