Vegetation History and Archaeobotany

, Volume 21, Issue 4–5, pp 353–372 | Cite as

A marine/terrestrial integration for mid-late Holocene vegetation history and the development of the cultural landscape in the Po valley as a result of human impact and climate change

  • Anna Maria MercuriEmail author
  • Marta Bandini Mazzanti
  • Paola Torri
  • Luigi Vigliotti
  • Giovanna Bosi
  • Assunta Florenzano
  • Linda Olmi
  • Isabella Massamba N’siala
Original Article


Integration of pollen data from both marine and terrestrial cores contributes to the understanding of the timing of the climatic and human forces that shaped the cultural landscapes in the Italian peninsula. This paper focuses on the relation between natural and human landscapes, and the development of the cultural landscape from the Bronze Age to the medieval period and modern times. Two records were studied within independent projects, first the marine core RF93-30, from the central Adriatic, with a sediment source area including the Po valley and which spans the last 7,000 years, and secondly, material from the site of Terramara di Montale, a Bronze Age settlement on the Po plain, which was occupied from approximately 3550–3200 cal. b.p. The original chronology of the marine core was developed by using the magnetic inclination of the secular variation record and two 14C dates carried out on benthic and planktic foraminifera at depths of 527 and 599 cm. Its pollen record shows a gradual irreversible trend towards increasing aridity since 5700 cal. b.p. and, just after around 5100 cal. b.p., a Picea decline and a Quercus ilex type increase indicate less cool conditions. Human impact introduces rapid changes, such as the decrease of Abies alba, thinned by the reduction of precipitation and further cleared before or during the Early Bronze Age, followed by the fall of oaks. The latter started after around 3900 cal. b.p., and became evident at around 3600 cal. b.p. The gradual increase in signs of open landscape and woodland clearance correspond to the onset of Middle Bronze Age settlements in the Po valley, and to the development of the cultural landscape in the region. The impact of the terramare people includes woodland management by coppicing, and division of the territory into a patchwork of pastures and fields. Dry environments are indicated mainly by Cichorioideae, resulting from the continued human pressure, and these spread since the Recent Bronze Age. Of the possible causes for the decline of the terramare, we suggest that climate would have been less important in the decline than in the onset phases. The later cultural landscapes are mainly indicated by the trends of the Olea, Juglans and Castanea (OJC) records, besides those of cereals. At around 700 cal. b.p., the “chestnut landscape” spread while modern times are shown by the finds of Zea mays.


Bronze Age Environmental changes Human impact Marine core Mediterranean basin Castanea 



The study of core RF93-30 was part of the EU project PALICLAS—Palaeoenvironmental Analysis of Italian Crater Lake and Adriatic Sediments (1994–1996; coordinator Frank Oldfield). The Terramara di Montale was excavated under the direction of Andrea Cardarelli (Sapienza University of Rome). The research was funded by the EU projects: ARCHAEOLIVE (1999/2002), Cultural landscapes of the past (2005/2006), liveARCH (2006/2009), PaCE (2007/2009). The archaeobotanical studies of sites in Emilia Romagna were funded by the Italian National Research Council The Archaeobotanical Archives—Plants used by man (which, where, how, when) (1998/2003; University of Modena). The present study was supplied with the PICAR project (cultural landscaPe and human Impact in Circum-mediterranean countries: multidisciplinary Archaeobotanical research for environmental, phylogeographic, climatic and virtual Reconstructions; coordinator A.M.Mercuri, Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale 2008FJCEF4—Italy). We are indebted to Cristina Bellini for comments and for revising the English, and to Wiebke Kirleis and Elena Marinova for constructive comments on the first draft. The authors acknowledge Laura Sadori for fruitful comments, and the constructive reviews provided by two anonymous referees who helped to improve chronology and the clarity of the paper.

Supplementary material

334_2012_352_MOESM1_ESM.xls (17 kb)
ESM Table 1 Zea mays pollen morphology: records from the marine core RF93-30, and descriptions in literature (DM = maximum diameter; Dm = minimum diameter). Supplementary material 1 (XLS 17 kb)
334_2012_352_MOESM2_ESM.xls (38 kb)
ESM Table 2 Pollen zones and sub-zones of the marine core RF93-30. Supplementary material 2 (XLS 38 kb)


  1. Accorsi CA, Bandini Mazzanti M, Mercuri AM, Rivalenti C, Trevisan Grandi G (1996) Holocene forest pollen vegetation of the Po plain—Northern Italy (Emilia Romagna data). Allionia 34:233–276Google Scholar
  2. Accorsi CA, Bandini Mazzanti M, Mercuri AM, Rivalenti C, Torri P (1998) Analisi pollinica di saggio per l’insediamento palafitticolo di Canàr-Rovigo, 6.80–7.00 m s.l.m. (Antica Età del Bronzo). In: Balista C, Bellintani P (eds) Canàr di San Pietro Polesine. Ricerche archeo-ambientali sul sito palafitticolo, Ist. Editoriali E Poligrafici Internazionali, Rovigo, pp 131–149Google Scholar
  3. Accorsi CA, Bandini Mazzanti M, Forlani L, Mercuri AM, Trevisan Grandi G (1999) An overview of Holocene forest pollen flora/vegetation of the Emilia Romagna region—northern Italy. Archivio Geobotanico 5:3–37Google Scholar
  4. Accorsi CA, Bandini Mazzanti M, Forlani L, Mercuri AM, Trevisan Grandi G (2004) Holocene forest vegetation (pollen) of the Emilia-Romagna plain—Northeastern Italy. In: Pedrotti F, Gehu JM (eds) La végétation postglaciaire du passé et du présent syngenèse. Synécologie et Synsystématique. Colloq Phytosociol 28:110–140Google Scholar
  5. Aceti A, Ravazzi C, Vescovi E (2009) Analisi pollinica della successione stratigrafica. In: Bernabò Brea M, Cremaschi M (eds) Acqua e civiltà nelle terramare. La vasca votiva di Noceto. Università degli Studi di Milano & Skirà, pp 121–131Google Scholar
  6. Andersen ST (1979) Identification of wild grasses and cereal pollen. Danmarks Geologiske Undersøgelse, Årbog, pp 69–92Google Scholar
  7. Bandini Mazzanti M, Bosi G, Rinaldi R (2005) Morfobiometria degli endocarpi di Cornus mas L. nell’età del Bronzo e nel periodo romano in Emilia. Informatore Botanico Italiano 37:890–891Google Scholar
  8. Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  9. Bellini C, Mariotti-Lippi M, Mori Secci M, Aranguren B, Perazzi P (2008) Plant gathering and cultivation in prehistoric Tuscany (Italy). Veget Hist Archaeobot 17:103–112CrossRefGoogle Scholar
  10. Bellini C, Mariotti-Lippi M, Montanari C (2009) The Holocene landscape history of the NW Italian coasts. Holocene 19:1161–1172CrossRefGoogle Scholar
  11. Berger JC, Guillane J (2009) The 8200 cal BP abrupt environmental change and the Neolithic transition: a Mediterranean perspective. Quat Int 200:31–49CrossRefGoogle Scholar
  12. Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link? Quat Int 105:7–12CrossRefGoogle Scholar
  13. Bernabò Brea M, Cardarelli A, Cremaschi M (eds) (1997) Le terramare—la più antica civiltà padana. Electa, MilanoGoogle Scholar
  14. Bertolani-Marchetti D, Accorsi CA, Bandini Mazzanti M, Dallai D, Forlani L, Mariotti Lippi M, Mercuri AM, Mori M, Rivalenti C, Trevisan Grandi G (1994) Palynological diagram of the peat-bog near Pavullo nel Frignano (Modena, Italy) in the framework of Tuscan/Emilian Apennines vegetation history. Hist Biol 9:91–101CrossRefGoogle Scholar
  15. Beug HJ (1964) Untersuchungen zur spät- und postglazialen Vegetationsgeschichte im Gardaseegebiet unter besonderer Berücksichtigung der mediterranen Arten. Flora 154:401–444Google Scholar
  16. Birks HH, Birks HJB, Kaland PE, Moe D (eds) (1988) The cultural landscape: past, present and future. Cambridge University Press, CambridgeGoogle Scholar
  17. Bosi G, Mercuri AM, Guarnieri C, Bandini Mazzanti M (2009) Luxury food and ornamental plants at the 15th century a.d. Renaissance court of the Este family (Ferrara, northern Italy). Veget Hist Archaeobot 18:389–402CrossRefGoogle Scholar
  18. Brooks N (2006) Cultural responses to aridity in the Middle Holocene and increased social complexity. Quat Int 151:29–49CrossRefGoogle Scholar
  19. Cardarelli A (ed) (2009a) Guide to the archaeological park and open-air museum Terramara Montale. Comune di Modena, ModenaGoogle Scholar
  20. Cardarelli A (2009b) Insediamenti dell’Età del Bronzo fra Secchia e Reno. Formazione, affermazione e collasso delle Terramare. In: Cardarelli A, Malnati L (eds) Atlante dei Beni Archeologici della Provincia di Modena—vol III: Collina e Alta Pianura. All’Insegna del Giglio, Firenze, pp 33–58Google Scholar
  21. Caroli I, Caldara M (2007) Vegetation history of Lago Battaglia (eastern Gargano coast, Apulia, Italy) during the middle-late Holocene. Veget Hist Archaeobot 16:317–327CrossRefGoogle Scholar
  22. Carrión JS, Munuera M, Dupré M, Andrade A (2001) Abrupt vegetation changes in the Segura mountains of southern Spain throughout the Holocene. J Ecol 89:783–797CrossRefGoogle Scholar
  23. Carrión JS, Yll EI, Walker MJ, Legaz AJ, Chaíns C, López A (2003) Glacial refugia of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Global Ecol Biogeogr 12:119–129CrossRefGoogle Scholar
  24. Cattabiani A (1998) Florario. Miti, leggende e piante. Mondadori, MilanoGoogle Scholar
  25. Cervi A (2003) Criminopalinologia: come cercare la pollen fingerprint su indumenti e corpo. Confronto tra un Caso Forense e due simulazioni. Dissertation, Università di Modena e Reggio EmiliaGoogle Scholar
  26. Cremaschi M, Zerboni A (2009) Early to Middle Holocene landscape exploitation in a drying environment: two case studies compared from the central Sahara (SW Fezzan, Libya). C R Geosci 341:689–702CrossRefGoogle Scholar
  27. Cremaschi M, Pizzi C, Valsecchi V (2006) Water management and land use in the terramare and a possible climatic co-factor in their abandonment: the case study of the terramara of Poviglio Santa Rosa (northern Italy). Quat Int 151:87–98CrossRefGoogle Scholar
  28. De Menocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292:667–672CrossRefGoogle Scholar
  29. Di Pietro R, Izeo J, Blasi C (2004) Contribution to the nomenclatural knowledge of Fagus sylvatica woodlands of southern Italy. Plant Biosyst 138:27–36Google Scholar
  30. Di Rita F, Magri D (2009) Holocene drought, deforestation and evergreen vegetation development in the central Mediterranean: a 5500 year record from Lago Alimini Piccolo, Apulia, southeast Italy. Holocene 19:295–306CrossRefGoogle Scholar
  31. Di Rita F, Oronzo S, Caldara M, Roland Gehrels W, Magri D (2011) Holocene environmental changes in the coastal Tavoliere Plain (Apulia, southern Italy): a multiproxy approach. Palaeogeogr Palaeoclimatol Palaeoecol 310:139–151CrossRefGoogle Scholar
  32. Diamond J (2005) Collapse: how societies choose to fail or succeed. Viking, New YorkGoogle Scholar
  33. Fægri K, Iversen J (1989) Textbook of pollen analysis. (by Fægri, K, Kaland, PE and Krzywinski, K), 4th edn. Wiley, ChichesterGoogle Scholar
  34. Fletcher WJ, Sánchez Goñi MF (2008) Orbital and sub-orbital-scale climate impacts on vegetation of the western Mediterranean Basin over the last 48,000 yr. Quat Res 70:451–464CrossRefGoogle Scholar
  35. Florenzano A, Mercuri AM, Pederzoli A, Torri P, Bosi G, Olmi L, Rinaldi R, Bandini Mazzanti M (2012) The significance of intestinal parasite remains in pollen samples from Medieval pits in the Piazza Garibaldi of Parma, Emilia Romagna, Northern Italy. Geoarchaeology 27:34–47CrossRefGoogle Scholar
  36. Follieri M, Giardini M, Magri D, Sadori L (1998) Palynostratigraphy of the last glacial period in the volcanic region of central Italy. Quat Int 47/48:3–20CrossRefGoogle Scholar
  37. Giraudi C (2004) Le oscillazioni di livello del lago di Mezzano (Valentano-VT): variazioni climatiche e interventi antropici. Il Quaternario 17:221–230Google Scholar
  38. Giraudi C, Magny M, Zanchetta G, Drysdale RN (2011) The Holocene climatic evolution of Mediterranean Italy: A review of the continental geological data. Holocene 21:105–115CrossRefGoogle Scholar
  39. Grimm EC (2004) TILIA and TGView. Illinois State Museum, Springfield, ILGoogle Scholar
  40. Guilizzoni P, Oldfield F (eds) (1996) Special volume: palaeoenvironmen-tal analysis of Italian crater lake and Adriatic sediments (PALICLAS). Mem Ist Ital Idrobiol 55, Consiglio Nazionale delle Ricerche, Verbania Pallanza, ItalyGoogle Scholar
  41. Jalut G, Esteban-Amat A, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean from South-East France to South-East Spain. Palaeogeogr Palaeoclimatol Palaeoecol 160:255–290CrossRefGoogle Scholar
  42. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: Climate forcing and human impact. Quat Int 200:4–18CrossRefGoogle Scholar
  43. Kaltenrieder P, Procacci G, Vanniere B, Tinner W (2010) Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). Holocene 20:679–695CrossRefGoogle Scholar
  44. Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veget Hist Archaeobot 13:145–160Google Scholar
  45. Kröpelin S, Verschuren D, Lézine A-M, Eggermont H, Cocquyt C, Francus P et al (2008) Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science 320:765–768CrossRefGoogle Scholar
  46. Langone L, Asioli A, Correggiari A, Trincardi F (1996) Age-depth modelling through the late Quaternary deposits of the central Adriatic basin. In: Guilizzoni P, Oldfield F (eds) Palaeoenvironmental analysis of Italian crater lake and Adriatic sediments (PALICLAS). Mem Ist ital Idrobiol 55:177–196Google Scholar
  47. Lauteri M, Scartazza A, Guido MC, Brugnoli E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol 11:675–683CrossRefGoogle Scholar
  48. Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G (2004) Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J Evol Biol 17:1,286–1,296CrossRefGoogle Scholar
  49. Lauteri M, Monteverdi MC, Scarascia-Mugnozza G (2009) Preservation of Chestnut (Castanea sativa Mill.): genetic resources and adaptive potential in relation to environmental changes. Acta Hortic 866:677–682Google Scholar
  50. Lowe JJ, Accorsi CA, Bandini Mazzanti M, Bishop A, Forlani L, Van der Kaars S, Mercuri AM, Rivalenti C, Torri P, Watson C (1996) Pollen stratigraphy of sediment sequences from crater lakes (Lago Albano and Lago Nemi) and the Central Adriatic spanning the interval from Oxygen isotope Stage 2 to present day. Mem Ist Ital Idrobiol 55:71–98Google Scholar
  51. Magny M, Peyron O, Gauthier E, Rouèche Y, Bordon A, Billaud Y, Chapron E, Marguet A, Pétrequin P, Vannière B (2009a) Quantitative reconstruction of climatic variations during the Bronze and early Iron ages based on pollen and lake-level data in the NW Alps, France. Quat Int 200:102–110CrossRefGoogle Scholar
  52. Magny M, Vannière B, Zanchetta G, Fouache E, Touchais G, Petrika L et al (2009b) Possible complexity of the climatic event around 4300–3800 cal. BP in the central and western Mediterranean. Holocene 19:1–11Google Scholar
  53. Magri D (2007) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463CrossRefGoogle Scholar
  54. Magri D, Sadori L (1999) Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico, central Italy. Veget Hist Archaeobot 8:247–260CrossRefGoogle Scholar
  55. Magri D, Vendramin GG, Comps B et al (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221CrossRefGoogle Scholar
  56. Mazier F (2007) Modelisation de la relation entre pluie pollinique actuelle, végetation et pratiques pastorales en moyenne montagne (Pyrenees et Jura): application pour l’interprétation des données polliniques fossiles. Doctoral thesis, U.F.R. des sciences et téchniques, Université de Franche ComtéGoogle Scholar
  57. Mercuri AM (2008a) Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). J Archaeol Sci 35:1,619–1,642CrossRefGoogle Scholar
  58. Mercuri AM (2008b) Human influence, plant landscape, evolution and climate inferences from the archaeobotanical records of the Wadi Teshuinat area (Libyan Sahara). J Arid Environ 72:1950–1967CrossRefGoogle Scholar
  59. Mercuri AM (2009) Plants and culture: a neglected basic partnership for interculturality. In: Morel J-P, Mercuri AM (eds) Plants and culture: seeds of the cultural heritage of Europe. Centro Universitario per i Beni Culturali. Ravello, Edipuglia, Bari, pp 17–24Google Scholar
  60. Mercuri AM, Accorsi CA, Bandini Mazzanti M, Ferrarini S, Venturi L (1997) Aerobiologia 2.0: A software for processing aeropollen data. J Environ Pathol Toxicol Oncol 16:191–194Google Scholar
  61. Mercuri AM, Bandini Mazzanti M, Accorsi CA (1999) Anthropic pollen and seeds/fruits from the archaeological site of Monte Castellaccio (Imola-Bologna, Northern Italy)—Eneolithic and Bronze Age human influence on vegetal landscape. In: Guarino A (ed) 2nd international congress on science and technology for the safeguard of cultural heritage in the Mediterranean basin (Paris, July 1999). Elsevier, Paris, pp 1203–1206Google Scholar
  62. Mercuri AM, Massamba N’siala I, Barbieri G (2001) 2000 Pollen Calendar—2-hourly airborne pollen monitoring station – University of Modena and Reggio Emilia (Botanical Garden/Geophysical Observatory). Atti Soc Nat Mat Modena 132:25–64Google Scholar
  63. Mercuri AM, Accorsi CA, Bandini Mazzanti M (2002) The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veget Hist Archaeobot 11:263–276CrossRefGoogle Scholar
  64. Mercuri AM, Accorsi CA, Bandini Mazzanti M (2004) Genesis and evolution of the cultural landscape in Italy as suggested by Central Adriatic pollen diagrams (PALICLAS project). Polen 14:229–230Google Scholar
  65. Mercuri AM, Accorsi CA, Bandini Mazzanti M, Bosi G, Trevisan Grandi G, Cardarelli A et al (2006a) Cereal fields from the Middle-Recent Bronze Age, as found in the Terramara di Montale, in the Po Plain (Emilia Romagna, Northern Italy), based on pollen, seeds/fruits and microcharchoals. In: Morel J-P, Tresserras J, Matalama JC (eds) The archaeology of crop fields and gardens. Centro Universitario per i Beni Culturali. Ravello, Edipuglia, Bari, pp 251–270Google Scholar
  66. Mercuri AM, Accorsi CA, Bandini Mazzanti M, Bosi G, Cardarelli A, Labate D, Trevisan Grandi G (2006b) Economy and environment of Bronze Age settlements—Terramaras—in the Po Plain (Northern Italy): first results of the archaeobotanical research at the Terramara di Montale. Veget Hist Archaeobot 16:43–60CrossRefGoogle Scholar
  67. Mercuri AM, Accorsi AC, Bandini Mazzanti M, Bigi P, Bottazzi G, Bosi G et al (2009) From the ‘‘Treasure of Domagnano’’ to the archaeobotany of a Roman and Gothic settlement in the Republic of San Marino. In: Morel J-P, Mercuri AM (eds) Plants and culture: seeds of the cultural heritage of Europe Centro Universitario per i Beni Culturali. Ravello, Edipuglia, Bari, pp 69–91Google Scholar
  68. Mercuri AM, Sadori L, Blasi C (2010a) Editorial: archaeobotany for cultural landscape and human impact reconstructions. Plant Biosyst 144:860–864Google Scholar
  69. Mercuri AM, Florenzano A, Massamba N’siala I, Olmi L, Roubis D, Sogliani F (2010b) Pollen from archaeological layers and cultural landscape reconstruction: case studies from the Bradano valley (Basilicata, southern Italy). Plant Biosyst 144:888–901Google Scholar
  70. Mercuri AM, Sadori L, Uzquiano Ollero P (2011) Mediterranean and north-African cultural adaptations to mid-Holocene environmental and climatic change. Holocene 21:189–206CrossRefGoogle Scholar
  71. Montali E, Accorsi CA, Trevisan Grandi G, Mercuri AM, Garofano G, Cervi A, Pagani A (2006) La ‘simulazione’ come strumento per l’interpretazione in Palinologia forense. GEA 1(suppl):130–131Google Scholar
  72. Montecchi MC, Mercuri AM, Bosi B, Forlani L, Rattighieri E, Accorsi CA (in press) Il paesaggio vegetale della Necropoli di Casinalbo secondo la ricerca archeobotanica su polline e carbone. In: Cardarelli A (ed) La necropoli di Casinalbo. Grandi contesti e problemi della Protostoria italiana, FirenzeGoogle Scholar
  73. Moore PD, Webb JA, Collison ME (1991) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  74. Oldfield F, Dearing JA (2003) The role of human activities in past environmental change. In: Alverson KD, Bradley RS, Pedersen TF (eds) Paleoclimate, global change and the future. IGBP Ser, Springer, Berlin, pp 143–168Google Scholar
  75. Oldfield F, Asioli A, Accorsi CA, Mercuri AM, Juggins S, Langone L, Rolph T, Trincardi F, Wolff G, Gibbs Z, Vigliotti L, Frignani M, Van der Post K, Branch N (2003) A high resolution late Holocene palaeo-environmental record from the central Adriatic Sea. Quat Sci Rev 22:319–342CrossRefGoogle Scholar
  76. Paganelli A, Miola A (1991) Chestnut (Castanea sativa Mill.) as an indigenous species in northern Italy. Il Quaternario 4:99–106Google Scholar
  77. Pérez-Obiol R, Sadori L (2007) Similarities and dissimilarities, synchro-nisms and diachronisms in the Holocene vegetation history of the Balearic Islands and Sicily. Veget Hist Archaeobot 16:259–265CrossRefGoogle Scholar
  78. Piva A, Asioli A, Trincardi F, Schneider RR, Vigliotti L (2008) Late-Holocene climate variability in the Adriatic Sea (Central Mediterranean). Holocene 18:153–167CrossRefGoogle Scholar
  79. Ranta H, Sokol C, Hicks S, Heino S, Kubin E (2008) How do airborne and deposition pollen samplers reflect the atmospheric dispersal of different pollen types? An example from northern Finland. Grana 47:285–296CrossRefGoogle Scholar
  80. Ravazzi C, Cremaschi M, Forlani L (2004) Studio archeobotanico della Terramara di S.Rosa di Poviglio (RE). Nuovi dati e analisi floristica e sintassonomica della vegetazione nell’et`a del Bronzo. In: Bernabò Brea M, Cremaschi M (eds) Gli scavi nell’abitato piccolo della Terramara Santa Rosa di Poviglio (Reggio nell’Emilia). Edizioni All’Insegna del Giglio, Firenze, pp 703–736Google Scholar
  81. Ravazzi C, Donegana M, Vescovi E, Arpenti E, Caccianiga M, Kaltenrieder P, Londeix L, Marabini S, Mariani S, Pini R, Vai GB, Wick L (2006) A new Late-glacial site with Picea abies in the northern Apennine foothills: an exception to the model of glacial refugia of trees. Veget Hist Archaeobot 15:357–371CrossRefGoogle Scholar
  82. Roberts N, Reed JM, Leng MJ, Kuzucuoğlu C, Fontugne M, Bertaux J et al (2001) The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11:721–736CrossRefGoogle Scholar
  83. Roberts N, Stevenson T, Davis B, Cheddadi R, Brewster S, Arlene Rosen A (2004) Holocene climate, environment and cultural change in the circum-Mediterranean region. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Springer, Dordrecht, pp 343–362CrossRefGoogle Scholar
  84. Roberts N, Brayshaw D, Kuzucuoğlu C, Perez R, Sadori L (2011) The mid-Holocene climatic transition in the Mediterranean: causes and consequences. Holocene 21:3–13CrossRefGoogle Scholar
  85. Rolph T, Shaw J (1986) Variations of the geomagnetic field in Sicily. J Geomag Geoelectr 38:1,269–1,277CrossRefGoogle Scholar
  86. Rolph TC, Vigliotti L, Oldfield F (2004) Mineral magnetism and geomagnetic secular variation of marine and lacustrine sediments from central Italy: timing and nature of local and regional Holocene environmental change. Quat Sci Rev 23:1,699–1,722CrossRefGoogle Scholar
  87. Sadori L (2007) Postglacial pollen records of Southern Europe. Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp 2,763–2,773Google Scholar
  88. Sadori L, Giardini M (2007) Charcoal analysis, a method to study vegetation and climate of the Holocene: the case of Lago di Pergusa, Sicily (Italy). Geobios 40:173–180CrossRefGoogle Scholar
  89. Sadori L, Giardini M (2008) Environmental history in the Mediterranean basin: microcharcoal as a tool to disentangle human impact and climate change. In: Fiorentino G, Magri D (eds) Charcoals from the past: cultural and palaeoenvironmental implications. Proceedings of the Third International Meeting of Anthracology, Cavallino—Lecce (Italy), 28 June-1 July 2004. (BAR International Series 1807) Archaeopress, Oxford, pp 229–236Google Scholar
  90. Sadori L, Narcisi B (2001) The Postglacial record of environmental history from Lago di Pergusa, Sicily. Holocene 11:655–670CrossRefGoogle Scholar
  91. Sadori L, Giraudi C, Petitti P, Ramrath A (2004) Human impact at Lago di Mezzano (central Italy) during the Bronze Age: a multidisciplinary approach. Quat Int 113:5–17CrossRefGoogle Scholar
  92. Sadori L, Mercuri AM, Pérez-Obiol R (2005) Oscillazioni oloceniche in curve polliniche da carote continentali e marine: un confronto est-ovest attraverso il Mediterraneo. Informatore Botanico Italiano 37:936–937Google Scholar
  93. Sadori L, Pérez-Obiol R, Bittmann F (2007) Introduction to the special issue, evolution of the landscape and climate in the Mediterranean ecosystem. Veget Hist Archaeobot 16:221Google Scholar
  94. Sadori L, Zanchetta G, Giardini M (2008) Last Glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, Southern Italy) as inferred by pollen, microcharcoal, and stable isotopes. Quat Int 181:4–14CrossRefGoogle Scholar
  95. Sadori L, Mercuri AM, Mariotti Lippi M (2010) Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosyst 144:940–951Google Scholar
  96. Sadori L, Jahns S, Peyron O (2011) Mid-Holocene vegetation history of the central Mediterranean. Holocene 21:117–129CrossRefGoogle Scholar
  97. Sevink J, Van Bergen M, Van der Plicht J, Feiken H, Anastasia C, Huizinga A (2011) Robust date for the Bronze Age Avellino eruption (Somma-Vesuvius): 3945 ± 10 cal BP (1995 ± 10 cal BC). Quat Sci Rev 30:1,035–1,046CrossRefGoogle Scholar
  98. Speranza F, Branca S, Coltelli M, D’Ajello Caracciolo F, Vigliotti L (2006) How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna. J Geophys Res 111:B12S33. doi: 10.1029/2006/B004496 CrossRefGoogle Scholar
  99. Spieksma FTM, Nikkels BH, Bottema S (1994) Relationship between recent pollen deposition and airborne pollen concentration. Rev Palaeobot Palynol 82:141–145CrossRefGoogle Scholar
  100. Stemler AB (1980) Origins of plant domestification in the Sahara and the Nile Valley. In: Williams MAJ, Faure H (eds) The Sahara and the Nile. Balkema, Rotterdam, pp 503–526Google Scholar
  101. Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230Google Scholar
  102. Sulpizio R, Bonasia R, Dellino P, Di Vito MA, La Volpe L, Mele D, Zanchetta G, Sadori L (2008) Discriminating the long distance dispersal of fine ash from sustained columns or near ground ash clouds: The example of the Pomici di Avellino eruption (Somma-Vesuvius, Italy). J Volcanol Geotherm Res 17:263–276CrossRefGoogle Scholar
  103. Sulpizio R, Van Welden A, Caron B, Zanchetta G (2010) The Holocene tephrostratigraphic record of Lake Shkodra (Albania and Montenegro). J Quat Sci 25:633–650CrossRefGoogle Scholar
  104. Torri P, Accorsi CA, Mercuri AM (2006) La stazione MO2 di Vignola: 15 anni di monitoraggio aerobiologico per ricerca e servizio pubblico. GEA 1(suppl):236–237Google Scholar
  105. Trincardi F, Cattaneo A, Asioli A, Corregiarre A, Langone L (1996) Stratigraphy of the Late Quaternary deposits in the central Adriatic basin and the record of short-term climatic events. In: Guilizzoni P, Oldfield F (eds) Special volume: palaeoenvironmental analysis of Italian crater lake and Adriatic sediments (PALICLAS). Mem Ist Ital Idrobiol 55:39–70Google Scholar
  106. Turner GM, Thompson R (1981) Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophys J R Astron Soc 65:703–725CrossRefGoogle Scholar
  107. Tzedakis PC, Andrieub V, De Beaulieu J-L, Crowhurst S, Follieri M, Hooghiemstra H, Magri D, Reille M, Sadori L, Shackleton NJ, Wijmstra TA (1997) Comparison of terrestrial and marine records of changing climate of the last 500,000 years. Earth Planet Sci Lett 150:171–176CrossRefGoogle Scholar
  108. Valamoti SM (2009) Plant food ingredients and ‘recipes’ from prehistoric Greece: the archaeobotanical evidence. In: Morel J-P, Mercuri AM (eds) Plants and culture: seeds of the cultural heritage of Europe. Centro Universitario per i Beni Culturali, Ravello. Edipuglia, Bari, pp 25–38Google Scholar
  109. Valsecchi V, Tinner W, Finsinger W, Ammann B (2006) Human impact during the Bronze Age in the vegetation at Lago Lucone (northern Italy). Veget Hist Archaeobot 15:99–113CrossRefGoogle Scholar
  110. Valsecchi V, Finsinger W, Tinner W, Ammann B (2008) Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). Holocene 18:603–614CrossRefGoogle Scholar
  111. Van der Kaars S, Penny D, Tibby J, Fluin J, Dam R, Suparan P (2001) Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West Java, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 171:185–212CrossRefGoogle Scholar
  112. Van der Knaap WO, Van Leeuwen JFN, Finsinger W, Gobet E, Pini R, Schweizer A, Valsecchi V, Ammann B (2005) Migration and population expansion of Abies, Fagus, Picea, and Quercus since 15000 years in and across the Alps, based on pollen-percentage threshold values. Quat Sci Rev 24:645–680CrossRefGoogle Scholar
  113. Vescovi E, Kaltenrieder P, Tinner W (2010) Late-Glacial and Holocene vegetation history of Pavullo nel Frignano (Northern Apennines, Italy). Rev Palaeobot Palynol 160:32–45CrossRefGoogle Scholar
  114. Vigliotti L (2006) Secular variation record of the earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve. Geophys Journal Int 165:414–429CrossRefGoogle Scholar
  115. Weninger B, Clare L, Rohling EJ, Bar-Yosef O, Böhner U, Budja M et al (2009) The impact of rapid climate change on prehistoric societies during the Holocene in the eastern Mediterranean. Documenta Praehistorica 36:551–583CrossRefGoogle Scholar
  116. Wick L, Möhl A (2006) The mid-Holocene extinction of silver fir (Abies alba) in the southern Alps: a consequence of forest fires? Palaeobotanical records and forest simulations. Veget Hist Archaeobot 15:435–444CrossRefGoogle Scholar
  117. Zanchetta G, Sulpizio R, Roberts N, Cioni R, Eastwood WJ, Siani G, Caron B, Paterne M, Santacroce R (2011) Tephrostratigraphy, chronology and climatic events of the Mediterranean basin during the Holocene: An overview. Holocene 21:33–52CrossRefGoogle Scholar
  118. Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Anna Maria Mercuri
    • 1
    Email author
  • Marta Bandini Mazzanti
    • 1
  • Paola Torri
    • 1
  • Luigi Vigliotti
    • 2
  • Giovanna Bosi
    • 1
  • Assunta Florenzano
    • 1
  • Linda Olmi
    • 1
  • Isabella Massamba N’siala
    • 1
  1. 1.Laboratorio di Palinologia e Paleobotanica, Dipartimento di BiologiaUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Istituto di Scienze Marine, ISMAR-CNRBolognaItaly

Personalised recommendations