Advertisement

Vegetation History and Archaeobotany

, Volume 21, Issue 4–5, pp 385–396 | Cite as

Vegetation dynamics and anthropogenically forced changes in the Estanilles peat bog (southern Pyrenees) during the last seven millennia

  • Ramon Pérez-ObiolEmail author
  • Marie-Claude Bal
  • Albert Pèlachs
  • Raquel Cunill
  • Joan Manuel Soriano
Original Article

Abstract

Estanilles peat bog, located in the northeastern Iberian peninsula, was studied to determine the anthropogenic changes in the landscape over the past seven millennia. The pollen diagram and sedimentary charcoal analyses from this site permit us to reconstruct the landscape changes in an area of both Mediterranean and Atlantic influence. In addition, Montarenyo ombrotrophic peat bog was studied to strengthen the analysis of data from more recent centuries. This paper attempts a reconstruction of historical cultural landscapes using two complementary palaeobotanical proxies (pollen and charcoal) in high mountain environments. The macroscopic charcoal record shows a fire signal since 7500 cal. b.p. However, the relationship between fire frequency and human impact is not always linear. This divergence is linked to fuel availability and fire activity. Fire has been used repeatedly to clear ground and to maintain open areas, and has been a key tool for the management of these high mountain areas. The intensity of use of the landscape implies the expansion of agricultural areas into higher altitudes, including cereal cultivation above 2,200 m a.s.l., during the Middle Ages. The first clear human influence detected in the pollen percentage data is recorded between 6000 and 7000 cal. b.p. and, until present times, the greatest changes in vegetation and landscape history occurred during periods of particular specialization in socioeconomic activities during the Middle Ages.

Keywords

Anthropic action Pollen Sedimentary charcoal Holocene Fire Pyrenees 

Notes

Acknowledgments

This article has benefited from funding provided by the Catalan government (Generalitat de Catalunya) for the Applied Geography Group (2009SGR00106) and Palynological Research Group (2009 SGR 1102) and by the Ministry of Education Science (MEC) for the project entitled “Los paisajes de las áreas de montaña. Patrones de gestión y de ocupación del territorio [CSO2009-08271 (subprograma GEOG)]” and “Cambios tecno-culturales y de paisaje en la transición Pleistoceno-Holoceno en las zonas de influencia mediterránea de la Península Ibérica (II) (HAR2008-01984/HIST).” In addition, Raquel Cunill was supported by a fellowship from the Generalitat de Catalunya. Finally, the authors thank Elaine Lilly, Ph.D., of Writer’s First Aid for English translation and language revision.

References

  1. Aaby B (1986) Trees as anthropogenic indicators in regional pollen diagrams from eastern Denmark. In: Behre KE (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 73–93Google Scholar
  2. Allen J, Huntley B, Watts W (1996) The vegetation and climate of the northwest Iberia over the last 14.000 year. J Quat Sci 11:125–147CrossRefGoogle Scholar
  3. Andersen STh (1984) Forests at Løvenholm, Djursland, Denmark, at present and in the past. Biologiske Skrifter 24:1–211Google Scholar
  4. Bal MC, Pèlachs A, Pérez-Obiol R, Julià R, Cunill R (2011) Fire history and human activities during the last 3,300 cal. year BP in Spain’s central Pyrenees: the case of the Estany de Burg. Palaeogeogr Palaeoclimatol Palaeoecol 300:179–190CrossRefGoogle Scholar
  5. Björkman L (1997) The history of Fagus forest in southwestern Sweden during the last 1,500 years. Holocene 7:419–432CrossRefGoogle Scholar
  6. Cañellas N, Rull V, Vigo J, Mercadé A (2009) Modern pollen–vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). Holocene 19:1,185–1,200Google Scholar
  7. Carcaillet C (1998) A spatially precise study of Holocene fire history, climate and human impact within the Maurienne valley, North French Alps. J Ecol 86:384–396CrossRefGoogle Scholar
  8. Carcaillet C, Bouvier M, Fréchette B, Larouche AC, Richard PJH (2001) Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. Holocene 11:467–476CrossRefGoogle Scholar
  9. Carcaillet C, Bergman I, Delorme S, Hornberg G, Zackrisson O (2007) Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 88:465–477CrossRefGoogle Scholar
  10. Clark JS, Royal PD, Chumbley C (1996) The role of fire during climate change in an eastern deciduous forest at Devil’s Bathtub. Ecology 77:2,148–2,166CrossRefGoogle Scholar
  11. Corella JP, Moreno A, Morellón M, Rull V, Giralt S, Rico MT, Pérez-Sanz A, Valero-Garcés B (2011) Climate and human impact on a meromictic lake during the last 6,000 years (Montocortès Lake, Central Pyrenees, Spain). J Paleolimnol 46:351–367Google Scholar
  12. Cunill R (2010) Estudi interdisciplinar de l’evolució del límit superior del bosc durant el període holocènic a la zona de Plaus de Boldís-Montarenyo, Pirineu central català. Bellaterra [doctoral thesis] http://tesisenred.net/handle/10803/4995. Accessed 03 Nov 2011
  13. Danzeglocke U, Jöris O, Weninger B (2010) CalPal-2007online. http://www.calpal-online.de/. Accessed 25 Mar 2010
  14. Ejarque A, Julià R, Riera S, Palet JM, Orengo HA, Miras Y, Gascón C (2009) Tracing the history of highland human management in the eastern pre-Pyrenees: an interdisciplinary palaeoenvironmental study at the Pradell fen, Spain. Holocene 19:1,241–1,255CrossRefGoogle Scholar
  15. Ejarque A, Miras Y, Riera S, Palet JM, Orengo HA (2010) Testing micro-regional variability in the Holocene shaping of high mountain cultural landscapes: a palaeoenvironmental case-study in the eastern Pyrenees. J Archaeol Sci 37:1,468–1,479CrossRefGoogle Scholar
  16. Esteban A, Oliver J, Còts P, Pèlachs A, Mendizàbal E, Soriano JM, Nasarre E, Matamala N (2003) La humanización de las altas cuencas de la Garona y las Nogueras (4,500 a.c.–1955 d.c.). Servicio Nacional de Parques Nacionales, MadridGoogle Scholar
  17. Fyfe RM, Brown AG, Rippon SJ (2003) Mid-to late-Holocene vegetation history of Greater Exmoor, UK: estimating the spatial extent of human-induced vegetation change. Veget Hist Archaeobot 12:215–232CrossRefGoogle Scholar
  18. Galop D (2005) Les transformations de l’environnement pyrénéen durant l’Antiquité : l’état de la question à la lumière des données polliniques. Aquitania Suppl. 13:317–327Google Scholar
  19. Gardner AR, Willis KJ (1999) Prehistoric farming and the postglacial expansion of beech and hornbeam: a comment on Küster. Holocene 9:119–122CrossRefGoogle Scholar
  20. Gassiot E, Jiménez J, Picón A (2006) Nuevas Aportaciones al Estudio de la Prehistoria y la Protohistoria en las Zonas Altas del Pallars Sobirà: Planteamientos, Resultados y Potencialidad. In: Simbolismo, Arte e Espaços Sagrados na Pré-história da Península Ibérica. Actas do IV Congreso de Arqueología Peninsular. Promotoria Monográfica 05. Faro: Universidade do Algarbe, pp 169–179Google Scholar
  21. Gassiot E, Pèlachs A, Bal MC, García V, Julià R, Pérez R, Rodríguez D, Astrou ACH (2010) Dynamiques des activités anthropiques sur un milieu montagnard dans les Pyrénées occidentales catalanes durant la Préhistoire: une approche multidisciplinaire. Archéologie de la montagne européenne. Bibliothèque d’Archéol Méditerr Afr-4. Aix-en-Provence, Centre Camille Julien, éditions Errance 55:33–43Google Scholar
  22. Gavin DG, Brubaker LB, Lertzman KP (2003) Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates. Ecology 84:186–201CrossRefGoogle Scholar
  23. Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw RHW (2007) Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–131CrossRefGoogle Scholar
  24. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  25. Grimm EC (1991) Tilia version 2.0.B.4, Tiliagraph version 2.0 and Tiliagraph View Version 1.0.5.2, Research and Collection Section, Illinois State Museum, IllinoisGoogle Scholar
  26. Higuera PE, Sprugel DG, Brubaker LB (2005) Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. Holocene 15:238–251CrossRefGoogle Scholar
  27. Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82CrossRefGoogle Scholar
  28. John DM, Whitton BA, Brook AJ (eds) (2002) The freshwater algal flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge University Press, CambridgeGoogle Scholar
  29. Komárek J, Fott B (1983) Chlorophyceae (Grünalgen), Ordnung Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süsswassers. Systematik und Biologie. 16(7/1). Hälfe. (Die Binnengewässer, Band XVI). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 1–1,044Google Scholar
  30. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 196:19–30CrossRefGoogle Scholar
  31. Küster H (1997) The role of farming in the postglacial expansion of beech and hornbeam in the oak woodlands of central Europe. Holocene 7:239–242CrossRefGoogle Scholar
  32. Latałowa M (1992) Man and vegetation in the pollen diagrams from Wolin Island (NW Poland). Acta Palaeobot 32:123–249Google Scholar
  33. Lynch JA, Clark JS, Stocks BJ (2004) Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian J For Res Rev Can Rech For 34:1,642–1,656Google Scholar
  34. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463CrossRefGoogle Scholar
  35. Martínez-Moreno J, Mora R (2009) Balma Guilanyà (Prepirineo de Lleida) y el Aziliense en el noreste de la Península Ibérica. Trab Prehist 66:45–60CrossRefGoogle Scholar
  36. Marugan CM, Oliver J (2005) El Pallars medieval. In: Marugan CM, Rapalino V (eds) Història del Pallars. Dels orígens als nostre dies. Pagès Editors, Lleida, pp 45–86Google Scholar
  37. Marugan C, Rappalino V (2005) Història del Pallars dels orígens als nostres dies. Pagès editors, LleidaGoogle Scholar
  38. Mas C (2000) Història de la farga catalana: el cas de la vall Ferrera, al Pallars Sobirà (1750–1850). Pagès, LleidaGoogle Scholar
  39. Miras Y, Ejarque A, Riera S, Palet JM, Orengo H, Euba I (2007) Dynamique holocène de la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancien, d’après l’analyse pollinique de la tourbière de Bosc dels Estanyons (2,180 m, Vall del Madriu, Andorre). CR Palevol 6:291–300CrossRefGoogle Scholar
  40. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, LondonGoogle Scholar
  41. Muñoz Sobrino C, Ramil-Rego P, Gómez-Orellana L, Varela RAD (2005) Palynological data on major Holocene climatic events in NW Iberia. Boreas 34:381–400CrossRefGoogle Scholar
  42. Ninyerola M, Sáez L, Pérez-Obiol R (2007) Relating postglacial relict plants and Holocene vegetation dynamics in the Balearic Islands through field surveys, pollen analysis and GIS modelling. Plant Biosyst 141:292–304CrossRefGoogle Scholar
  43. Oeggl K, Mathis F, Moser J, Schneider I, Leitner W, Tomedi G, Stöllner T, Krause R, Pernicka E, Tropper P, Schibler J, Nicolussi K, Hanke K (2008) The history of mining activities in the Tyrol and adjacent areas: impact on environment and human societies (HiMAT). Antiquity 82(317):367–376Google Scholar
  44. Pèlachs A (2005) Deu mil anys de geohistòria ambiental al Pirineu Central Català. Aplicació de tècniques paleogeogràfiques per a l’estudi del territori i el paisatge a la Coma de Burg i a la Vallferrera. [Ten thousand years of environmental geohistory in the Central Catalan Pyrenees. Application of palaeogeographical techniques in the study of land and landscape in Coma de Burg and Vallferrera.] http://www.tdx.cesca.es/TDX-0119105-162806/(19-1-2005), Bellaterra [doctoral thesis]. Accessed 03 Nov 2011
  45. Pèlachs A, Soriano JM, Nadal J, Esteban A (2007) Holocene environmental history and human impact in the Pyrenees. Contribut Sci 3:423–431Google Scholar
  46. Pèlachs A, Pérez-Obiol R, Ninyerola M, Nadal J (2009a) Landscape dynamics of Abies and Fagus in the southern Pyrenees during the last 2,200 years as a result of anthropogenic impacts. Rev Palaeobot Palynol 156:337–349CrossRefGoogle Scholar
  47. Pèlachs A, Nadal J, Soriano JM, Molina D, Cunill R (2009b) Changes in Pyrenean woodlands as a result of the intensity of human exploitation: 2,000 years of metallurgy in Vallferrera, northeast Iberian Peninsula. Veget Hist Archaeobot 18:403–416CrossRefGoogle Scholar
  48. Pèlachs A, Julià R, Pérez-Obiol R, Soriano JM, Bal MC, Cunill R, Catalan J (2011) Potential influence of Bond events on mid-Holocene climate and vegetation in southern Pyrenees as assessed from Burg lake LOI and pollen records. Holocene 21:95–104CrossRefGoogle Scholar
  49. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278CrossRefGoogle Scholar
  50. Prentice IC, Guiot J, Harrison SP (1992) Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360:658–660CrossRefGoogle Scholar
  51. Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord, Suppl. 2 (1998). Laboratoire de botanique historique et palynologie. Marseille, URA CNRSGoogle Scholar
  52. Reille M, Andrieu V (1994) Vegetation history and human activity in Ariège (Pyrénées, France). Diss Bot 234:413–422Google Scholar
  53. Rendu C (2003) La montagne d’Enveig: un estive pyreneen dans la longue durée. Perpignan, TrabucaireGoogle Scholar
  54. Ruddiman W, McIntyre A (1981) The north Atlantic Ocean during the last deglaciation. Palaeogeogr Palaeoclimatol Palaeocol 35:145–214CrossRefGoogle Scholar
  55. Rull V, González-Sampériz P, Corella JP, Morellón M, Giralt S (2011) Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record. J Paleolimnol 46:387–404Google Scholar
  56. Stockmarr J (1971) Tablets with spores used in absolute Pollen Analysis. Pollen Spores 13:615–621Google Scholar
  57. Straus LG, González Morales MR, Fano Martínez MA (2002) Last glacial human settlement in Eastern Cantabria (northern Spain). J Archaeol Sci 29:1,403–1,414CrossRefGoogle Scholar
  58. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226CrossRefGoogle Scholar
  59. Whitlock C, Millspaugh SH (1996) Testing assumptions of fire history studies: an examination of modern charcoal accumulation in Yellowstone National Park. Holocene 6:7–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ramon Pérez-Obiol
    • 1
    Email author
  • Marie-Claude Bal
    • 2
  • Albert Pèlachs
    • 3
  • Raquel Cunill
    • 3
    • 4
  • Joan Manuel Soriano
    • 3
  1. 1.Unitat de Botànica, Facultat de BiociènciesUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.GEOLAB, UMR/CNRS 6042, Département de Geógraphie, Faculté des Lettres et des Sciences HumainesLimogesFrance
  3. 3.GRAMP (Grup de Recerca en Àrees de Muntanya i Paisatge), Departament de Geografia, Edifici BUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Laboratoire GEODE, UMR 5602 CNRSUniversité Toulouse Le MirailToulouse CedexFrance

Personalised recommendations