Vegetation History and Archaeobotany

, Volume 21, Issue 4–5, pp 279–302 | Cite as

Neolithic human impact on the landscapes of North-East Hungary inferred from pollen and settlement records

  • Enikő K. Magyari
  • John Chapman
  • Andrew S. Fairbairn
  • Mark Francis
  • Margarita de Guzman
Original Article

Abstract

In this article, we discuss the Neolithic and Early Copper Age (ECA) part of two pollen records from the Middle Tisza Floodplain in association with the local archaeological settlement record. We address the hypothesis of Willis and Bennett (2004) that there was little human impact by farmers on the environment of SE Europe until the Bronze Age. Contrary to this hypothesis, our results show that small-scale agriculture and woodland clearance is already attestable in the earliest Neolithic in Eastern Hungary, there are signs of expanding scale of mixed farming in the Middle Neolithic and strong evidence for extensive landscape alterations with enhanced pasturing and mixed farming in the Late Neolithic (LN) and ECA. The main vegetation exploitation techniques in the alluvial plain of Sarló-hát were selective tree felling (mainly Quercus), coppicing (mainly Corylus and Ulmus) and woodland clearance to establish grazing pastures and small-scale crop farming. Comparison with other well-dated pollen diagrams from Eastern Hungary suggested that, in the Early and Middle Neolithic (8000–7000 cal. b.p.), Corylus and Ulmus coppicing were probably frequent, while pastoral activities and associated woodland clearance is distinguished in the LN (7000–6500 cal. b.p.). Our data also suggested a shift to moister summer conditions in the alluvium during the ECA, which may have contributed to a trend towards settlement dispersion and increased reliance on animal husbandry in the NE Hungarian Plain.

Keywords

Human impact Pollen analysis Archaeology Neolithic Copper Age Great Hungarian Plain 

Supplementary material

334_2012_350_MOESM1_ESM.doc (69 kb)
Supplementary material 1 (DOC 69 kb)

References

  1. Aaby B, Digerfeldt G (1986) Sampling techniques for lakes and bogs. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 181–194Google Scholar
  2. Arcanum (2006) A második magyar katonai felmérés 1806–1869 [The second military survey 1806–1869]. DVD Arcanum Kft, BudapestGoogle Scholar
  3. Bánffy E (2005) The Csaroda area during the Mesolithic the Neolithic and the Copper Age In: Gál E, Juhász I, Sümegi P (eds) Environmental archaeology in North-Eastern Hungary. VAH 19, Budapest, pp 207–222Google Scholar
  4. Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  5. Behre KE (ed) (1986) Anthropogenic indicators in pollen diagrams. Balkema, RotterdamGoogle Scholar
  6. Behre KE (2007) Evidence for Mesolithic agriculture in and around central Europe? Veget Hist Archaeobot 16:203–219CrossRefGoogle Scholar
  7. Bennett KD (1997) PSIMPOLL 30 & PSCOMB 103 manual program. http://chrono.qub.ac.uk/psimpoll/psimpoll.html. Accessed 17 Feb 2012
  8. Berglund BE (2003) Human impact and climate changes—synchronous events and a causal link. Quat Int 105:7–12CrossRefGoogle Scholar
  9. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–479Google Scholar
  10. Birks HJ, Birks HH (1980) Quaternary palaeoecology. University Park Press, BaltimoreGoogle Scholar
  11. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  12. Bogaard A, Bending J, Jones G (2008) Crop husbandry and its social significance in the Körös and LBK cultures. In: Bailey D, Whittle A, Hofmann D (eds) Living well together? Settlement and materiality in the Neolithic of South-East and Central Europe. Oxbow Books, Oxford, pp 131–139Google Scholar
  13. Bökönyi S (1959) Die frühalluviale Wirbeltierfauna Ungarns (vom Neolithikum bis zur La Tène Zeit). Acta Archaeol Hung 11:39–102Google Scholar
  14. Bökönyi S (1974) History of domestic mammals in Central and Eastern Europe. Akadémiai Kiadó, BudapestGoogle Scholar
  15. Borsy Z, Csongor É, Félegyházi E (1989) A Bodrogköz kialakulása és vízhálózatának változásai [Formation of the Bodrogköz landscape and changes of its river network]. Alföldi Tanulmányok 13:65–81Google Scholar
  16. Chapman J (1994) Social power in the early farming communities of Eastern Hungary—perspectives from the Upper Tisza region. A Jósa András Múzeum Évkönyve 36:79–100Google Scholar
  17. Chapman J (1997) Places as timemarks—the social construction of landscapes in Eastern Hungary. In: Chapman J, Dolukhanov P (eds) Landscapes in Flux. Colloquenda Pontica 3. Oxbow Books, Oxford, pp 137–162Google Scholar
  18. Chapman J, Laszlovszky J (1993) The Upper Tisza Project 1992. Archaeological reports for 1992. University of Durham, pp 13–19Google Scholar
  19. Chapman J, Shiel R, Passmore D, Magyari E (2003) The Upper Tisza Project: studies in Hungarian landscape archaeology. http://ads.ahds.ac.uk/catalogue/projArch/uppertisza_ba_2003/index.cfm. Accessed 19 December 2011
  20. Chapman J, Magyari E, Gaydarska B (2009) Contrasting subsistence strategies in the Early Iron Age? New results from the Alföld Plain Hungary and the Thracian Plain Bulgaria. Oxf J Archaeol 28:155–187CrossRefGoogle Scholar
  21. Chapman J, Gillings M, Shiel R, Gaydarska B, Bond C (2010a) The Upper Tisza Project book 4, Lowland settlement in North East Hungary: excavations at the Neolithic settlement site of Polgár-10. BAR Intern Ser 2089. Archaeopress, OxfordGoogle Scholar
  22. Chapman J, Gillings M, Shiel R, Gaydarska B, Bond C (2010b) The Upper Tisza Project book 3, Settlement patterns in the Bodrogköz block. BAR Intern Ser 2087. Archaeopress, OxfordGoogle Scholar
  23. Clark RL (1982) Point count estimation of charcoal in pollen preparations and thin sections in sediments. Pollen Spores 24:523–535Google Scholar
  24. Colombaroli D, Vannière B, Chapron E, Magny M, Tinner W (2008) Fire–vegetation interactions during the Mesolithic–Neolithic at Lago dell’Accesa Italy. Holocene 18:679–692CrossRefGoogle Scholar
  25. Csengeri P (2005) The Neolithic and the Copper Age in the Sajó-Bódva Interfluve. In: Gál E, Juhász I, Sümegi P (eds) Environmental archaeology in North-eastern Hungary. Varia Archaeol Hung 19:223–235Google Scholar
  26. Domboróczki L (2005) A Körös-kultúra északi eltejedési határának problematikája a Tiszaszőlős-Domaháza-Pusztán végzett ásatás eredményének fényében [The problem of the northern boundary of the Körös culture in light of excavations at Tiszaszőlős-Domaháza-Puszta]. Archeometriai Műhely 2005:5–15 (in Hungarian with English summary)Google Scholar
  27. Domboróczki L, Raczky P (2010) Excavations at Ibrány-Nagyerdő and the northernmost distribution of the Körös culture in Hungary. In: Kozłowski JK, Raczky P (eds) Neolithization of the Carpathian Basin: northernmost distribution of the Starčevo/Körös culture. Polish Academy of Arts & Sciences/Institute of Archaeological Sciences ELTE, Kraków/Budapest, pp 191–218Google Scholar
  28. Ecsedy I, Kovács L, Maráz B, Torma I (eds) (1982) Békés megye régészeti topográfiája IV/1. A szeghalmi járás [Archaeological topography of Hungary, County Békés]. Magyarország Régészeti Topográfiája 6. Akadémiai Kiadó, BudapestGoogle Scholar
  29. Fairbairn AS (1992) Archaeobotanical investigations at Csőszhalom: a Late Neolithic tell site in north-east Hungary. MSc Thesis, Institute of Archaeology, University College LondonGoogle Scholar
  30. Fairbairn AS (1993) Plant husbandry at the prehistoric Hungarian tell sites of Csőszhalom and Kenderföld. Final report for the British Academy Applied Sciences in Archaeology Fund, Durham University, DurhamGoogle Scholar
  31. Fekete G, Molnár Zs, Horváth F (eds) (1997) A magyarországi élőhelyek leírása határozója és a Nemzeti Élőhely-osztályozási Rendszer [Description and identification key to Hungarian vegetation types according to habitats]. A Nemzeti Biodiverzitás-monitorozó Rendszer Kézikönyvei 2. Természettudományi Múzeum, BudapestGoogle Scholar
  32. Gardner AR (2002) Neolithic to Copper Age woodland impacts in northeast Hungary? Evidence from pollen and sediment chemistry records. Holocene 12:541–553CrossRefGoogle Scholar
  33. Gillings M (1997) Spatial organization in the Tisza floodplain: landscape dynamics and GIS. In: Chapman J, Dolukhanov P (eds) Landscapes in flux: Central and Eastern Europe in antiquity. Oxbow Books, Oxford, pp 163–179Google Scholar
  34. Gillings M (1998) Embracing uncertainty and challenging dualism in the GIS-based study of a paleo-flood plain. Eur J Archaeol 1:117–144CrossRefGoogle Scholar
  35. Gillings M (2007) The Ecsegfalva landscape: affordance and inhabitation. In: Whittle A (ed) The Early Neolithic on the Great Hungarian Plain, investigations of the Körös culture site of Ecsegfalva 23, County Békés. Institute of Archaeology, Budapest, pp 31–46Google Scholar
  36. Gyulai F (2010) Archaeobotany in Hungary: seed fruit food and beverage remains in the Carpathian Basin from the Neolithic to the Late Middle Ages. Archeolingua, BudapestGoogle Scholar
  37. Hajdú Zs, Nagy E (1999) Rövid jelentés az M3-as autópálya Hajdú-Bihar megyei szakaszán azonosított régészeti lelőhelyeken 1993–1998 között végzett munkálatokról [Short report on archaeological sites detected between 1993–1998 along the M3 motorway line in county Hajdú-Bihar]. A Debreceni Déri Múzeum Évkönyve 1997(98):143–154Google Scholar
  38. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  39. Hertelendi E, Kalicz N, Raczky P, Horváth F, Veres M, Svingor É, Futó I, Bartosiewitz L (1995) Re-evaluation of the Neolithic in Eastern Hungary based on calibrated radiocarbon dates. Radiocarbon 37:239–244Google Scholar
  40. Iversen J (1941) Landnam i Danmarks Stenalder: En pollenanalytisk Undersøgelse over det første Landbrugs Indvirkning paa Vegetationsudviklingen (Dansk tekst 7–59 Engl text 60–65). Danmarks Geologiske Undersøgelse IIrække 66:1–68 (reprinted 1964)Google Scholar
  41. Jankovich BD, Makkay J, Szőke BM (eds) (1989) Békés megye régészeti topografiája IV/2: szarvasi járás [Archaeological topography of county Békés IV/2: the Szarvas municipality]. Magyarórszag Régészeti Topografiája 8. Akadémiai Kiadó, BudapestGoogle Scholar
  42. Johnson GA (1984) Organizational structure and scalar stress. In: Renfrew C, Rowlands MJ, Segraves BA (eds) Theory and explanation in archaeology: the Southampton conference. Academic Press, New York, pp 389–421Google Scholar
  43. Jones G, Bogaard A, Halstead P, Charles M, Smith H (1999) Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu Br Sch Athens 94:167–189Google Scholar
  44. Juhász I, Sümegi P, Szántó Zs, Svingor É, Molnár M, Jakab G (2007) The Little Balaton region and the Balaton uplands. In: Zatykó Cs, Juhász I, Sümegi P (eds) Environmental archaeology in Transdanubia. Varia Archaeol Hung 20, Budapest, pp 25–78Google Scholar
  45. Kalicz N, Makkay J (1977) Die Linienbandkeramik in der Großen Ungarischen Tiefebene. Studia Archaeol 7, BudapestGoogle Scholar
  46. Kalicz N, Raczky P (eds) (1987) The Late Neolithic of the Tisza region. Szolnok County Museums, Budapest-SzolnokGoogle Scholar
  47. Kertész R, Sümegi P (1999) Teóriák kritika és egy modell: Miért állt meg a Körös-Starčevo kultúra terjedése a Kárpát-medencében? [Theories, critic and a model: why did the spread of the Körös-Starčevo culture stop in the Carpathian Basin?]. Tisicum 11:9–23Google Scholar
  48. Kosse K (1979) Settlement ecology of the Early and Middle Neolithic Körös and Linear Pottery cultures in Hungary. BAR Intern Ser 64, OxfordGoogle Scholar
  49. Kreuz A (2007) Archaeobotanical perspectives on the beginning of agriculture north of the Alps. In: Colledge S, Conolly J (eds) Archaeobotanical perspectives on the origin and spread of agriculture in southwest Asia and Europe. UCL Press, LondonGoogle Scholar
  50. Kuneš P, Pokorný P, Šída P (2008) Detection of impact of Early Holocene hunter–gatherers on vegetation in the Czech Republic using multivariate analysis of pollen data. Veget Hist Archaeobot 17:269–287CrossRefGoogle Scholar
  51. Lüning J, Kalis AJ (1992) The influence of Early Neolithic settlers on the vegetation of the Lower Rhinelands and the determination of cleared areas based on archaeological and palynological criteria. In: Frenzel B (ed) Evaluation of land surfaces cleared from forests by prehistoric man in Early Neolithic times and the time of migrating Germanic tribes. Paläoklimaforschung 8:41–46Google Scholar
  52. Magyari E, Sümegi P, Braun M, Jakab G, Molnár M (2001) Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from the NE Carpathian Basin. J Ecol 89:1,019–1,032CrossRefGoogle Scholar
  53. Magyari EK, Jakab G, Sümegi P, Szöőr Gy (2008) Holocene vegetation dynamics in the Bereg Plain NE Hungary—the Báb-tava pollen and plant macrofossil record. Acta Geogr Debrecina 42:1–16Google Scholar
  54. Magyari EK, Chapman JC, Passmore DG, Allen JRM, Huntley JP, Huntley B (2010) Holocene persistence of wooded steppe in the northern Great Hungarian Plain. J Biogeogr 37:915–935CrossRefGoogle Scholar
  55. Makkay J (1982a) Some comments on the settlement pattern of the Alföld Linear Pottery. In: Pavúk J (ed) Siedlungen der Kultur mit Linearkeramik in Europa. Archäologisches Institut der Slowakischen Akademie der Wissenschaften, Nitra, pp 157–166Google Scholar
  56. Makkay J (1982b) A magyarországi neolitikum kutatásának új eredményei [New results of the Hungarian Neolithic research]. Akadémiai Kiadó, BudapestGoogle Scholar
  57. Marinova E (2007) Archaeobotanical data from the early Neolithic of Bulgaria. In: Connolly J, Colledge S (eds) Early Neolithic in Southwest Asia and Europe: archaeobotanical perspectives in Neolithic plant economies. UCL Press, London, pp 93–109Google Scholar
  58. Marinova E, Tonkov S, Bozilova E, Vajsov I (2012) Holocene anthropogenic landscapes in the Balkans: the palaeobotanical evidence from southwestern Bulgaria. Veget Hist Archaeobot 21. doi:10.1007/s00334-011-0345-8 (this volume)
  59. Marosi M, Somogyi M (1990) Magyarország Kistájainak Katasztere I [Cadastre of small regions in Hungary I]. MTA Földrajztudományi Kutatóintézete, BudapestGoogle Scholar
  60. Molnár Zs (1996) Flood plain vegetation at Tiszadob and Kesznyéten (Middle Tisza Valley) II. History and present state of the hardwood floodplain woodlands (Fraxini–Pannonicae–Ulmetum). Botanikai Közlemények 83:51–69 (in Hungarian with English summary)Google Scholar
  61. Moore PD, Webb JA, Collinson ME (1992) Pollen analysis, 2nd edn. Blackwell, OxfordGoogle Scholar
  62. Nandris J (1970) Ground water as a factor in the First Temperate Neolithic of the Körös region. Zbornik Narodnog Muzeja (Beograd) 6:59–71Google Scholar
  63. Parkinson WA (2006) The social organization of Early Copper Age tribes on the Great Hungarian Plain. BAR Intern Ser 1573. Archaeopress, OxfordGoogle Scholar
  64. Parnell AC, Haslett J, Allen JRM, Buck CE, Huntley B (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quat Sci Rev 27:1,872–1,885CrossRefGoogle Scholar
  65. Pavúk J (2007) Zur Frage der Entstehung und Verbreitung der Lengyel-Kultur. In: Kozłowski JK, Raczky P (eds) The Lengyel Polgár and related cultures in the Middle/Late Neolithic in Central Europe. Polish Academy of Arts & Sciences and Institute of Archaeological Sciences ELTE, Kraków, pp 11–28Google Scholar
  66. Poska A, Saarse L, Veski S (2004) Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr Palaeoclimatol Palaeoecol 209:37–50CrossRefGoogle Scholar
  67. Punt W, Clarke GCS (eds) (1984) The northwest European pollen flora IV. Elsevier, AmsterdamGoogle Scholar
  68. Raczky P (1995) Late Neolithic settlement patterns in the Tisza region of Hungary. In: Aspes A (ed) Symposium “Settlement patterns between the Alps and the Black Sea 5th–2nd millennium B.C.” Memorie del Museo Civico di Storia Naturale di Verona II/4, pp 77–86Google Scholar
  69. Raczky P, Anders A (2008) Late Neolithic spatial differentiation at Polgár-Csőszhalom eastern Hungary. In: Bailey DW, Whittle A, Hofmann D (eds) Living well together? Settlement and materiality in the Neolithic of south-east and central Europe. Oxbow Books, Oxford, pp 35–53Google Scholar
  70. Raczky P, Meier-Arendt W, Kurucz K, Hajdú Zs, Szikora Á (1994) Polgár-Csőszhalom. Egy késő neolitikus lelőhely kutatása a Felső-Tisza vidéken és annak kulturális összefüggései [Polgár-Csőszhalom, a Late Neolithic settlement in the Upper Tisza Region and its cultural connections, preliminary report]. A nyíregyházi Jósa András Múzeum Évkönyve 36:231–240Google Scholar
  71. Raczky P, Meier-Arendt W, Anders A, Hajdú Zs, Nagy E, Kurucz K, Domboróczki L, Sebők K, Sümegi P, Magyari E, Szántó Zs, Gulyás S, Dobó K, Bácskay ET, Biró K, Schwartz C (2002) Polgár-Csőszhalom (1989–2000): summary of the Hungarian-German excavations on a Neolithic settlement in eastern Hungary. In: Aslan R, Blum S, Kastl G, Schweizer F, Thumm D (eds) Mauerschau: Festschrift für Manfred Korfmann Band 2. Remshalden-Grunbach, pp 833–860Google Scholar
  72. Raczky P, Domboróczki L, Hajdú Zs (2007) The site of Polgár-Csőszhalom and its cultural and chronological connections with the Lengyel culture. In: Kozłowski JK, Raczky P (eds) The Lengyel Polgár and related cultures in the Middle/Late Neolithic in Central Europe. Polish Academy of Arts & Sciences and Institute of Archaeological Sciences ELTE, Kraków, pp 49–70Google Scholar
  73. Raczky P, Anders A, Bartosiewicz L (2011) The enclosure system of Polgár-Csőszhalom and its interpretation. In: Hansen S, Müller J (eds) Sozialarchäologische Perspektiven: Gesellschaftliche Wandel 5000-1500 v. Chr. zwischen Atlantik und Kaukasus. Archäologie in Eurasien 24. Von Zabern, Darmstadt, pp 57–79Google Scholar
  74. Reille M (1992) Pollen et spore d’Europe et d’Afrique du Nord. Laboratorie de Botanique Historique et Palynologie, Marseille, France, Supplement 1 (1995), Supplement 2 (1998)Google Scholar
  75. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Herring C, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1,029–1,058Google Scholar
  76. Renfrew C (1984) Approaches to social archaeology. Edinburgh University Press, EdinburghGoogle Scholar
  77. Seppä H (1998) Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8:43–53CrossRefGoogle Scholar
  78. Sherratt A (1982a) Mobile resources: settlement and exchange in early agricultural Europe. In: Renfrew C, Shennan SJ (eds) Ranking resources and exchange. Cambridge University Press, Cambridge, pp 13–26Google Scholar
  79. Sherratt A (1982/1983) The development of Neolithic and Copper Age settlement in the Great Hungarian Plain Parts I and II. Oxf J Archaeol 1:287–316 and 2:13–41Google Scholar
  80. Soepboer W (2010) Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: a pollen-based reconstruction using the REVEALS model. Quat Sci Rev 29:472–483CrossRefGoogle Scholar
  81. Soepboer W, Sugita S, Lotter AF, Van Leeuwen JFN, Van der Knaap WO (2007) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 17:65–77CrossRefGoogle Scholar
  82. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:614–621Google Scholar
  83. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24000-0 cal. B.P. Radiocarbon 40:1,041–1,083Google Scholar
  84. Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244CrossRefGoogle Scholar
  85. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241CrossRefGoogle Scholar
  86. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257CrossRefGoogle Scholar
  87. Sümegi P (1999) Reconstruction of flora soil and landscape evolution and human impact on the Bereg Plain from late-glacial up to the present based on palaeoecological analysis. In: Hamar J, Sárkány-Kiss A (eds) The Upper Tisza valley. Tiscia Monograph Series. Szeged, pp 171–203Google Scholar
  88. Sümegi P (2005) Pro-Neolithic development in north-eastern Hungary. In: Gál E, Juhász I, Sümegi P (eds) Environmental archaeology in north-east Hungary. Varia Archaeol Hung, Budapest, pp 15–24Google Scholar
  89. Sümegi P, Kertész R (1998) A Kárpát-medence őskörnyezeti sajátosságai – egy ökológiai csapda az újkőkorban? [Palaeoenvironmental characteristics of the Carpathian Basin—an ecological pitfall in the Neolithic?]. Jászkunság 44:144–157Google Scholar
  90. Sümegi P, Csökmei B, Persaits G (2005) The evolution of Polgár Island a loess-covered lag surface and its influences on the subsistence of settling human cultural groups. In: Hum L, Gulyás S, Sümegi P (eds) Environmental historical studies from the Late Tertiary and Quaternary of Hungary. Department of Geology and Paleontology, University of Szeged, Szeged, pp 141–164Google Scholar
  91. Szász G, Tőkei L (1997) Meteorológia mezőgazdáknak kertészeknek erdészeknek [Meteorology for agronomists horticulturists and foresters]. Mezőgazda Kiadó, BudapestGoogle Scholar
  92. Tímár G, Sümegi P, Horváth F (2005) Late Quaternary dynamics of the Tisza River: evidence of climatic and tectonic controls. Tectonophysics 410:97–110CrossRefGoogle Scholar
  93. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. Holocene 15:1,214–1,226CrossRefGoogle Scholar
  94. Tinner W, Nielsen EH, Lotter AF (2007) Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat Sci Rev 26:1,416–1,431CrossRefGoogle Scholar
  95. Troels-Smith J (1955) Karakterisering af løse jordarter Danmarks. Geologiske Undersøgelse Ser IV 3:1–73Google Scholar
  96. Ujvárosi M (1957) Gyomnövények gyomirtás [Weeds and chemical weed control]. Mezőgazdasági Kiadó, BudapestGoogle Scholar
  97. Walter H (1974) Vegetationsmonographien der einzelnen Großräume, Band 7: Die Vegetation Osteuropas Nord- und Zentralasiens. Fischer, StuttgartGoogle Scholar
  98. Wasylikowa K (1996) Environmental changes during Neolithic times in the Cracow area. In: Frenzel B (ed) Evaluation of land surfaces cleared from forests by prehistoric man in Early Neolithic times and the time of migrating Germanic tribes. Palaeoclimate research, vol 8. Fischer, Stuttgart, pp 73–91Google Scholar
  99. Whitlock C, Larsen CPS (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3: terrestrial algal and siliceous indicators. Kluwer, Dordrecht, pp 75–97Google Scholar
  100. Whittle A (ed) (2007) The Early Neolithic on the Great Hungarian Plain investigations of the Körös culture site of Ecsegfalva 23 County Békés. Institute of Archaeology, BudapestGoogle Scholar
  101. Willis KJ (2007) The impact of the Early Neolithic Körös culture on the landscape: evidence from palaeoecological investigations of the Kiri-tó. In: Whittle A (ed) The Early Neolithic on the Great Hungarian Plain investigations of the Körös culture site of Ecsegfalva 23 County Békés. Institute of Archaeology, Budapest, pp 83–98Google Scholar
  102. Willis KJ, Bennett KD (1994) The Neolithic transition—fact or fiction? Palaeoecological evidence from the Balkans. Holocene 4:326–330CrossRefGoogle Scholar
  103. Willis KJ, Sümegi P, Braun M, Tóth A (1997) Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78:740–750CrossRefGoogle Scholar
  104. Willis KJ, Sümegi P, Braun M, Bennett KD, Tóth A (1998) Prehistoric land degradation in Hungary: who how and why? Antiquity 72:101–113Google Scholar
  105. Zólyomi B (1946) Természetes növénytakaró a tiszafüredi öntözőrendszer terültén [Natural vegetation on the Irrigation system-area of Tiszafüred]. Öntözésügyi Közlemények 7–8:62–74Google Scholar
  106. Zvelebil M (1994) Plant use in the Mesolithic and its role in the transition to farming. Proc Prehist Soc 60:35–74Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Enikő K. Magyari
    • 1
  • John Chapman
    • 2
  • Andrew S. Fairbairn
    • 3
  • Mark Francis
    • 4
  • Margarita de Guzman
    • 5
  1. 1.Research Group for PaleontologyHungarian Academy of Sciences, Hungarian Natural History Museum, Eötvös UniversityBudapestHungary
  2. 2.Department of ArchaeologyDurham UniversityDurhamUK
  3. 3.School of Social ScienceThe University of QueenslandSt LuciaAustralia
  4. 4.BelfastNorthern Ireland, UK
  5. 5.Circle CRM Group Inc.CalgaryCanada

Personalised recommendations