Advertisement

Vegetation History and Archaeobotany

, Volume 21, Issue 4–5, pp 373–384 | Cite as

Holocene treeline changes on the south slope of the Pyrenees: a pedoanthracological analysis

  • Raquel CunillEmail author
  • Joan-Manuel Soriano
  • Marie-Claude Bal
  • Albert Pèlachs
  • Ramon Pérez-Obiol
Original Article

Abstract

The principal objective of this research is to determine the maximum elevation reached by the treeline, as well as its altitudinal variations and composition throughout the Holocene, in a high mountain zone of the Pyrenean range. The temporal intervals of pedoanthracological data begin in 11000 cal. b.p. with the oldest dated charcoal, permitting a study of the entire Holocene period with the capacity to analyze climatic and anthropic situations. This is the first study to apply analysis of soil charcoals to the meridional slope of the Pyrenees for this purpose, and also its first use in research on the Iberian Peninsula. Eight pedoanthracological sites were sampled in a transect from 2,000 to 2,600 m altitude, with an altitudinal resolution of 100 m. The spatial precision provided by this proxy allows us to show that the maximum extension of the upper forest line was 400 m above the current line. This suggests a complete change in the landscape of a zone that is now covered with pasture from 2,000 m to the peak (2,593 m). Although pre-Neolithic fires appear to have a primarily climatic component, the fire origins during and after this period are more complex and far from being explained by a single, unequivocal cause.

Keywords

Soil charcoal analysis Fire Human impact Treeline Pyrenees Holocene 

Notes

Acknowledgments

This research was developed within the framework of two projects, both of which were funded by Spain’s Ministry of Education Science (MEC): Sustainable local development in mountain zones at the threshold between territorial abandonment and naturbanization (SEJ2006-04009/GEOG: El desarrollo local sostenible de las zonas de montaña en el umbral entre el abandono del territorio y la naturbanización) and Mountain landscapes: Patterns of management and occupation of the territory (CSO2009-08271: Los paisajes de las áreas de montaña. Patrones de gestión y de ocupación del territorio). This work was made possible by support from the Generalitat de Catalunya’s Program of Fellowships and Grants for the training and support of new investigators and from European Social Funds (BE)(2009FIC 00046), as well as the Generalitat’s funding for the Applied Geography Research Group (SGR2001-00153). Finally, the authors thank Elaine Lilly of Writer’s First Aid for English translation and review.

References

  1. Ali AA, Carcaillet C, Guendon JL, Quinif Y, Roiron P, Terral JF (2003) The early Holocene treeline in the southern French Alps: new evidence from travertine formations. Glob Ecol Biogeogr 12:411–419CrossRefGoogle Scholar
  2. Bal MC, Rendu C, Ruas M, Campmajo P (2010) Paleosol charcoal: reconstructing vegetation history in relation to agro-pastoral activities since the Neolithic. A case study in the Eastern French Pyrenees. J Archaeol Sci. doi: 10.1016/j.jas.2010.01.035
  3. Bal MC, Pèlachs A, Pérez-Obiol R, Julià R, Cunill R (2011) Fire history and human activities during the last 3300 cal yr BP in Spain’s Central Pyrenees: the case of the Estany de Burg. Palaeogeogr Palaeoclimatol Palaeoecol 300:179–190CrossRefGoogle Scholar
  4. Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Appl Ecol 96:1275–1288Google Scholar
  5. Batllori E, Camarero J, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472CrossRefGoogle Scholar
  6. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317CrossRefGoogle Scholar
  7. Birks HH, Birks HJB (2000) Future uses of pollen analysis must include plant macrofossils. J Biogeogr 27:31–35CrossRefGoogle Scholar
  8. Bonhote J, Vernet JL (1988) La memoire des charbonnieres. Essai de reconstitution des milieux forestiers dans une vallee marquee par la metallurgie (Aston, Haute-Ariege). Revue Forestiere Francaise 40:197–212CrossRefGoogle Scholar
  9. Bonhote J, Davasse B, Dubois C, Izard V (2002) Charcoal kilns and environmental history in the eastern Pyrenees (France). A methodological approach. In: Thiébault S (ed) Charcoal analysis. Methodological approaches, palaeoecological results and wood uses. Proceedings 2nd Int. Meeting of Anthracology, Paris, September 2000, BAR Int Series 1063, Archaeopress, Oxford, pp 219–228Google Scholar
  10. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63:181–200CrossRefGoogle Scholar
  11. Camarero JJ, Gutiérrez E (2007) Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian system (NE Spain). Arctic Antarctic Alpine Res 39:210–217CrossRefGoogle Scholar
  12. Camarero L, Masqué P, Devos W, Ani-Ragolta I, Catalan J, Moor HC, Pla S, Sanchez-Cabeza JA (1998) Historical variations in lead fluxes in the Pyrenees (Northeast Spain) from a dated lake sediment core. Water Air Soil Pollut 105:439–449CrossRefGoogle Scholar
  13. Cañellas-Boltà N, Rull V, Vigo J, Mercadé A (2009) Modern pollen-vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). Holocene 19:1,185–1,200Google Scholar
  14. Carcaillet C (2001) Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. Holocene 11:231–242CrossRefGoogle Scholar
  15. Carcaillet C, Talon B (1996) Aspects taphonomiques de la stratigraphie et de la datation de charbons de bois dans les sols: exemple de quelques sols des Alpes. Géographie physique et Quaternaire 50:233–244CrossRefGoogle Scholar
  16. Carcaillet C, Thinon M (1996) Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne valley (North French Alps): methodology and preliminary data. Rev Palaeobot Palynol 91:399–416CrossRefGoogle Scholar
  17. Carnelli Al, Theurillat JP, Thinon M, Vadi G, Talon B (2004) Past uppermost tree limit in the Central European Alps (Switzerland) based on soil and soil charcoal. Holocene 14:393–405CrossRefGoogle Scholar
  18. Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2,047–2,066CrossRefGoogle Scholar
  19. Clark JS (1988) Particle motion and the theory of charcoal analysis: Source area, transport, deposition, and sampling. Quat Res 30:67–80CrossRefGoogle Scholar
  20. Cunill R (2007) Estudi de l’evolució del límit superior del bosc mitjançant la pedoantracologia a la zona de Plaus de Boldís-Montarenyo (Pallars Sobirà) [Study of the upper tree line evolution by pedoanthracology proxy in Plaus de Boldís-Montarenyo àrea (Pallars Sobirà)]. Master thesis, Universitat Autònoma de BarcelonaGoogle Scholar
  21. Cunill R (2010) Estudi interdisciplinari de l’evolució del límit superior del bosc durant el període holocènic a la zona de Plaus de Boldís-Montarenyo, Pirineu central català. Pedoanthracologique, palinologia, carbons sedimentaris i fonts documentals. Dissertation, Universitat Autònoma de Barcelona. http://www.tdx.cat/handle/10803/4995. Accessed 22 June 2011
  22. Di Pasquale G, Marziano M, Impagliazzo S, Lubritto C, De Natale A, Bader MY (2008) The Holocene treeline in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeogr Palaeoclimatol Palaeoecol 259:17–34CrossRefGoogle Scholar
  23. Dutoit T, Thinon M, Talon B, Buisson E, Alard D (2009) Sampling soil wood charcoals at a high spatial resolution: a new methodology to investigate the origin of grassland plant communities. J Veget Sci 20:349–358CrossRefGoogle Scholar
  24. Ejarque A (2009) Génesis y configuración microregional de un paisaje cultural pirenaico de alta montaña durante el Holoceno: estudio polínico y de otros indicadores paleoambientales en el valle del Madriu-Perafita-Claror (Andorra). Dissertation, Universitat Rovira i Virgili, http://www.tdx.cat/handle/10803/8640. Accessed 22 June 2011
  25. Ejarque A, Miras Y, Riera S, Palet JM, Orengo HA (2010) Testing microregional variability in the Holocene shaping of high mountain cultural landscapes: a palaeoenvironmental case-study in the eastern Pyrenees. J Archaeol Sci 37:1,468–1,479CrossRefGoogle Scholar
  26. Favilli F, Cherubini P, Collenberg M, Egli M, Sartori G, Schoch W, Haeberli W (2010) Charcoal fragments of Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). Holocene 20:67–79CrossRefGoogle Scholar
  27. Finsinger W, Tinner W, Van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  28. Galop D (1998) La forêt, l’homme et le troupeau dans les Pyrénées. 6000 ans d’histoire de l’environnemententre Garonne et Méditerranée. Laboratoire d’écologie terrestre: FRAMESPA, ToulouseGoogle Scholar
  29. Gassiot E, Jiménez J (2005) Informe de la « Excavació Arqueològica a l’Abric de l’Estany de la Coveta I (Juny-Setembre 2005). Servei d’Arqueologia de la generalitat de Catalunya. BarcelonaGoogle Scholar
  30. Gassiot E, Rodríguez D, Garcia V (2009) El poblament del Parc Nacional d’Aigüestortes i estanys de Sant Maurici durant el neolític. Novesa dades arqueològiques i les seves implicacions per a l’estudi de les zones d’alta muntanya. In: Aniz M (ed) VIII Jornades sobre recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Generalitat de Catalunya, Lleida, pp 153–164Google Scholar
  31. Goepp S (2007) Origine, histoire et dynamique des Hautes-Chaumes du massif vosgien. Déterminismes environnementaux et actions de l’Home. Université Louis Pasteur Strasbourg I, Strasbourg Google Scholar
  32. Grau O, Ninot JM, Callaghan TV (2011) Efecte dels arbusts en la dinàmica del límit superior del bosc de pi negre en resposta a simulacions de canvis ambientals als Pirineus centrals. Actes del IX Colloqui Internacional de Botànica Pirenaico-cantàbrica a Ordino, Andorra, pp 165–170Google Scholar
  33. Hansen AJ, di Castri F (1992) Landscape boundaries: consequences for biotic diversity and ecological flows. Springer, New YorkGoogle Scholar
  34. Henry F, Talon B, Dutoit T (2010) The age and history of the French Mediterranean steppe revisited by soil wood charcoal analysis. Holocene 20:25–34CrossRefGoogle Scholar
  35. Holtmeier FK (2003) Mountain timberlines—ecology, patchiness, and dynamics. Advances in Global Change Research, 14. Kluwer, DordrechtGoogle Scholar
  36. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410CrossRefGoogle Scholar
  37. Jalut G, Esteban A, Mora SR, Fontugne M, Mook R, Bonnet L, Gauquelin T (1997) Holocene climatic changes in the western Mediterranean: installation of the Mediterranean climate. Comptes Rendus de l’Academie des Sciences Series IIA. Earth Planet Sci 325:327–334Google Scholar
  38. Jalut G, Galop D, Belet JM, Aubert S, Esteban A, Bouchette A, Dedoubat JJ, Fontugne M (1998) Histoire des forêts du versant nord des Pyrénées au cours des 30000 dernières années. J de la Société Botanique Française 5:73–84Google Scholar
  39. Jalut G, Bonnet L, Gauquelin T, Fontugne M (2000) Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeogr Palaeoclimatol Palaeoecol 160:255–290CrossRefGoogle Scholar
  40. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: Climate forcing and human impact. Quat Internat 200:4–18CrossRefGoogle Scholar
  41. Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321Google Scholar
  42. Lynch JA, Clark JS, Stocks BJ (2004) Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Can J Forest Res 34:1,642–1,656CrossRefGoogle Scholar
  43. Magny M, De Beaulieu J, Drescher-Schneider R, Vannière B, Walter-Simonnet A, Miras Y, Millet L, Bossuet G, Peyron O, Brugiapaglia E, Leroux A (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26:1,736–1,758Google Scholar
  44. Marugan C, Rapalino V (2005) Història del Pallars del orígens als nostres dies. Pagès editors, LleidaGoogle Scholar
  45. Métailié JP (1986) Photographie et histoiredu paysage: un exemple dans les Pyrénées luchonnaise. Revue Géograpique des Pyrénées et du sud-oest 57:179–208Google Scholar
  46. Métailié JP, Faerber J (2003) Quinze années de gestion des feux pastoraux dans les pyrénées: Du blocage à la concertation (Fifteen years of pastoral fire management: From mental block to consultation). Sud-Ouest européen 16:37–51Google Scholar
  47. Miras Y, Ejarque A, Riera S, Palet JM, Orengo H, Euba I (2007) Dynamique holocene de la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancien, d’apres l’analyse pollinique de la tourbiere de Bosc dels Estanyons (2180 m, Vall del Madriu, Andorre). Comptes Rendus de l’Academie des Sciences - Serie Palevol 6:291–300CrossRefGoogle Scholar
  48. Miras Y, Ejarque A, Orengo H, Mora SR, Palet JM, Poiraud A (2010) Prehistoric impact on landscape and vegetation at high altitudes: an integrated palaeoecological and archaeological approach in the eastern Pyrenees (Perafita valley, Andorra). Plant Biosyst 144:924–939CrossRefGoogle Scholar
  49. Novák JL, Petr L, Treml V (2010) Late-Holocene human-induced changes to the extent of alpine areas in the East Sudetes, Central Europe. Holocene 20:895CrossRefGoogle Scholar
  50. Ohlson M, Tryterud E (2000) Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal. Holocene 10:519–525CrossRefGoogle Scholar
  51. Pèlachs A, Nadal J, Soriano JM, Molina D, Cunill R (2009a) Changes in Pyrenean woodlands as a result of the intensity of human exploitation: 2,000 years of metallurgy in Vallferrera, northeast Iberian Peninsula. Veget Hist Archaeobot 18:403–416CrossRefGoogle Scholar
  52. Pèlachs A, Pérez-Obiol R, Ninyerola M, Nadal J (2009b) Landscape dynamics of Abies and Fagus in the southern Pyrenees during the last 2200 years as a result of anthropogenic impacts. Rev Palaeobot Palynol 156:337–349CrossRefGoogle Scholar
  53. Pèlachs A, Julià R, Pérez-Obiol R, Soriano JM, Bal MC, Cunill R, Catalan J (2010) Potential influence of Bond events on mid-Holocene climate and vegetation in southern Pyrenees as assessed from Burg lake LOI and pollen records. Holocene 21:95–104CrossRefGoogle Scholar
  54. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dyn 24:263–278CrossRefGoogle Scholar
  55. Poschlod P, Baumann A (2010) The historical dynamics of calcareous grasslands in the central and southern Franconian Jurassic mountains: a comparative pedoanthracological and pollen analytical study. Holocene 20:13–23CrossRefGoogle Scholar
  56. Quilès D, Rohr V, Joly K, Lhuillier S, Ogereau P, Martin A, Bazile F, Vernet J (2002) Les feux préhistoriques holocènes en montagne sub-méditerranéenne: premiers résultats sur le Causse Méjean (Lozère, France) Prehistoric Holocene Fires in sub Mediterranean low mountains: first results from the Causse Méjean (Lozère, France). Comptes Rendus de l’Academie des Sciences - Serie Palevol 1:59–65CrossRefGoogle Scholar
  57. Reimer PJ, Baillie M, Bard E et al (2009) IntCal09 and Marine09 Radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51:1,111–1,150Google Scholar
  58. Rendu C (2003) La montagne d’Enveig: un estive pyreneen dans la longue durée. Trabucaire, PerpinyàGoogle Scholar
  59. Rull V, González-Sampériz P, Corella JP, Morellón M, Giralt S (2010) Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record. J Paleolimnol. doi: 10.1007/s10933-010-9444-2
  60. Sadori L, Zanchetta G, Giardini M (2008) Last Glacial to Holocene palaeoenvironmental evolution at Lago di Pergusa (Sicily, Southern Italy) as inferred by pollen, microcharcoal, and stable isotopes. Quat Internat 181:4–14CrossRefGoogle Scholar
  61. Schweingruber FH (1990a) Mikroskopische Holzanatomie: Formenspektren mitteleuropäischer Stamm- und Zweighölzer zur Bestimmung von rezentem und subfossilem Material. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, BirmensdorfGoogle Scholar
  62. Schweingruber FH (1990b) Anatomie europäischer Hölzer: ein Atlas zur Bestimmung europäischer Baum-. Strauch- und Zwergstrauchhölzer, Paul Haupt, BernGoogle Scholar
  63. Sicre MA, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon JL (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268:137–142CrossRefGoogle Scholar
  64. Talon B (1997) Evolution des zones supra-forestieres des Alpes sud-occidentales françaises au cours de l’Holocene analyse pedoanthracologique. Dissertation, Université de Droit, d’Economie et des Sciences d’Aix-Marseille IIIGoogle Scholar
  65. Talon B (2010) Reconstruction of Holocene high-altitude vegetation cover in the French southern Alps: evidence from soil charcoal. Holocene 20:35–44CrossRefGoogle Scholar
  66. Talon B, Carcaillet C, Thinon M (1998) Études pédoanthracologiques des variations de la limite supérieure des arbres au cours de l’Holocene dans les alpes françaises. Géographie physique et Quaternaire 52:195–208CrossRefGoogle Scholar
  67. Touflan P, Talon B (2008) Étude pédoanthracologique à haute résolution spatiale de l’histoire holòcene d’une forêt subalpine (Alpes du Sud, France). Ecologia Mediterranea. Revue d’écologie terrestre et limnique 34:13–23Google Scholar
  68. Touflan P, Talon B (2009) Spatial reliability of soil charcoal analysis: the case of Subalpine forest soils. Ecoscience 16:23–27CrossRefGoogle Scholar
  69. Touflan P, Talon B, Walsh K (2010) Soil charcoal analysis: a reliable tool for spatially precise studies of past forest dynamics: a case study in the French southern Alps. Holocene 20:45–52CrossRefGoogle Scholar
  70. Vannière B, Galop D, Rendu C, Davasse B (2008) Feu et pratiques agro-pastorales dans les Pyrénées-Orientales: Le cas de la montagne d’Enveitg (Cerdagne, Pyrénées-Orientales, France). Sud-Ouest européen 11:29–42Google Scholar
  71. Walsh K, Mocci F (2011) Mobility in the mountains: Late third and second millennia alpine societies’ engagements with the high-altitude zones in the Southern French Alps. Eur J Archaeol 14:88–115CrossRefGoogle Scholar
  72. Walsh K, Richer S, de Beaulieu JL (2006) Attitudes to altitude: changing meanings and perceptions within a ‘marginal’ Alpine landscape—the integration of palaeoecological and archaeological data in a high altitude landscape in the French Alps. World Archaeol 38:436–454CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raquel Cunill
    • 1
    Email author
  • Joan-Manuel Soriano
    • 1
  • Marie-Claude Bal
    • 2
  • Albert Pèlachs
    • 1
  • Ramon Pérez-Obiol
    • 3
  1. 1.GRAMP (Grup de Recerca en Àrees de Muntanya i Paisatge), Departament de GeografiaUniversitat Autònoma de BarcelonaCerdanyola del Vallès, BarcelonaSpain
  2. 2.GEOLAB, Départament de GeógraphieFaculté des Lettres et Sciences HumainesLimogesFrance
  3. 3.Unitat de Botànica, Facultat de BiociènciesUniversitat Autònoma de BarcelonaCerdanyola del Vallès, BarcelonaSpain

Personalised recommendations