Vegetation History and Archaeobotany

, Volume 19, Issue 5–6, pp 531–544 | Cite as

Non-pollen palynomorphs in the Black Sea corridor

  • Peta J. MudieEmail author
  • Fabienne Marret
  • André Rochon
  • Ali E. Aksu
Original Article


There have been few studies of non-pollen palynomorphs (NPP) in Holocene brackish water environments. The Black Sea is one of the world’s largest and deepest bodies of stable brackish water and a natural laboratory for study of marine carbon cycling to anoxic sediments. The main NPP in the modern sediments of this brackish water sea are dinoflagellate cysts (dinocysts), acritarchs (mainly the prasinophytes Cymatiosphaera, Micrhystridium, Sigmopollis and Pseudoschizaea) and diverse fungal remains. Other NPP include colonial algae, tintinnids, copepod and cladoceran egg covers, testate amoebae and microforaminiferal linings. These NPP assemblages are similar to those in the marginal marine environment of the Pliocene St. Erth Beds (England), but have more abundant NPP, and virtually lack scolecodonts. In the Black Sea corridor, modern assemblages from areas with salinity >22‰ have higher percentages of microforaminiferal linings and fewer prasinophytes, colonial algae and fungal spores. Prasinophytes dominate only in mid-Holocene sediments, during a 2000 years interval of sea level transgression and sapropel deposition. Early Holocene sediments have lower dinocyst diversity, increased fresh–brackish water colonial algae (Pediastrum spp. and Botryococcus braunii), zygnemataceous spores and desmids (including Zygnema, Cosmarium), ostracod linings and fewer foraminiferal linings. These assemblages are similar to those in the Baltic Sea where the annual salinity is about 6–8‰.


Non-pollen palynomorphs Shales Black Sea Pleistocene Holocene 



We thank Richard Hiscott and Helen Gillespie, Earth Science Division, Memorial University of Newfoundland, for radiocarbon ages and processing of the palynology samples from the Black Sea corridor, respectively. Also thanks to Bas van Geel, University of Amsterdam, and David Horne, Queen Mary’s College, University of London for identification of previously unknown NPP. We appreciate the helpful comments of reviewers Rob Fensome, Jens Matthiessen and Francine McCarthy.


  1. Abrajano T, Aksu AE, Hiscott RN, Mudie PJ (2002) Organic geochemistry and origin of Late Glacial–Holocene sapropelic layers and associated sediments in Marmara Sea. Mar Geol 190:47–60CrossRefGoogle Scholar
  2. Aksu AE, Hiscott RN, Kaminski MA, Mudie PJ, Gillespie H, Abrajano T, Yasar D (2002) Last glacial–Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence. Mar Geol 190:119–149CrossRefGoogle Scholar
  3. Aysel V, Dural B, Şenkardeşlet A, Erduğan H, Aysel F (2008) Marine algae and seagrasses of Samsun (Black Sea, Turkey). J Black Sea/Mediterr Environ 14:53–67Google Scholar
  4. Batten DJ (1996) Chapter 26B. Palynofacies and palaeoenvironmental interpretation. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 3. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 1,065–1,084Google Scholar
  5. Beyens L, Meisterfeld R (2001) Protozoa: testate amoebae. In: Smol JP, Birks JHB, Last WM (eds) Tracking environmental change using lake sediments. Vol 3: Terrestrial algal and silicious indicators. Kluwer, Dordrecht, pp 121–153Google Scholar
  6. Bolch CJS, Reynolds MJ (2002) Species resolution and global distribution of microreticulate dinoflagellate cysts. J Plankton Res 24:565–578CrossRefGoogle Scholar
  7. Bujak JP (1984) Cenozoic dinoflagellates and acritarchs from the Bering Sea and northern Pacific, DSDP Leg 19. Micropalaeo 30:180–212CrossRefGoogle Scholar
  8. Christopher RA (1976) Morphology and taxonomic status of Pseudoschizaea Thiergart and Frantz ex R. Potonié emend. Micropaleo 22:143–150CrossRefGoogle Scholar
  9. de la Rue SR, Rowe HD, Rimmer SM (2007) Palynological and bulk geochemical constraints on the paleoceanographic conditions across the Frasnian–Famennian boundary, New Albany Shale, Indiana. Int J Coal Geol 71:72–84CrossRefGoogle Scholar
  10. de Vernal A, Goyette C, Rodrigues CG (1989) Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de Saint-Césaire, Québec. Can J Earth Sci 26:2,450–2,464CrossRefGoogle Scholar
  11. Ellegaard M, Moestrup Ø (1999) Fine structure of the flagellar apparatus and morphological details of Gymnodinium nolleri sp. nov. (Dinophyceae), an unarmored dinoflagellate producing a microreticulate cyst. Phycologia 38:289–300CrossRefGoogle Scholar
  12. Fensome RA, Williams GL (2004) The Lentin and Williams index of fossil dinoflagellates. Am Assoc Stratigr Palynol Contrib Ser 42:1–909Google Scholar
  13. Fensome R, Williams GL, Barss S, Freeman JM, Hill JM (1990) Acritarchs and fossil prasinophytes: an index to genera, species and infraspecific taxa. Contributions series, American Association of Stratigraphic Palynologist Foundation No. 25, American Association Sedimentary Palynologists, Houston, pp 1–771Google Scholar
  14. Filipova-Marinova M (2007) Archaeological and paleontological evidence of climate dynamics, sea-level change, and coastline migration in the Bulgarian sector of the Circum-Pontic region. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question. Springer, Dordrecht, pp 453–482CrossRefGoogle Scholar
  15. Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle RiverGoogle Scholar
  16. Guy-Olsen D (1996) Chapter 7. Green and blue-green algae. 7B. Prasinophycean algae. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 181–189Google Scholar
  17. Hay WW (1995) Paleoceanography of marine organic-carbon-rich sediments. In: Huc A-Y (ed) Paleogeography, paleoclimate, and source rocks. American Association of Petroleum Geologists, Studies in Geology No. 40, pp 21–59Google Scholar
  18. Head MJ (1992) Zygospores of the Zygnemataceae (Division Chlorophyta) and other freshwater algal spores from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. Micropaleo 38:237–260CrossRefGoogle Scholar
  19. Head MJ (1993) Dinoflagellates, sporomorphs and other palynomorphs from the upper Pliocene St. Erth Beds of Cornwall, southwestern England. J Paleontol 67:1–62Google Scholar
  20. Head MJ, Borel CM, Guerstein GR, Harland R (2003) The problematic aquatic palynomorph genus Cobricosphaeridium Harland and Sarjeant 1970 emend with new records from the Holocene of Argentina. J Paleontol 77:1,159–1,181CrossRefGoogle Scholar
  21. Head MJ, Lewis J, de Vernal A (2006) The cyst of the calcareous dinoflagellate Scrippsiella trifida: resolving the fossil record of its organic wall with that of Alexandrium tamarense. J Paleontol 80:1–18CrossRefGoogle Scholar
  22. Hiscott RN, Aksu SE, Mudie PJ, Marret F, Abrajano T, Kaminski M, Evans J, Cakiroglu A, Yasar D (2007) A gradual drowning of the southwestern Black Sea shelf: evidence for progressive rather than abrupt Holocene reconnection with the eastern Mediterranean Sea through the Marmara Sea gateway. Quat Int 167/168:9–34Google Scholar
  23. Inouye I, Hori T, Chihara M (1990) Absolute configuration analysis of the flagellar apparatus of Pterosperma cristatum (Prasinophytaceae) and consideration of its phylogenetic position. J Phycol 26:329–344CrossRefGoogle Scholar
  24. Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. American Association of Stratigraphic Palynologist Foundation, Contribution Series No 39Google Scholar
  25. Kholeif SEA, Mudie PJ (2009) Palynomorph and amorphous organic matter records of climate and oceanic conditions in Late Pleistocene and Holocene sediments of the Nile Cone, southeastern Mediterranean. Palynology 33:1–24CrossRefGoogle Scholar
  26. Konzalova M (2002) Planktonic microfossil Concentricystes Ross. 1962 from Neogene and (Campanian?)-Palaeogene deposits of tropical and arid areas (Malaysia and Middle East). Zpravy o geologickych vyzkumech v roch [Geoscience Research Reports for 2002], pp 209–1210 (Czechoslovakian, with English abstract)Google Scholar
  27. Kunz-Pirrung M (1998) Rekonstruktion der Oberflächenwassermassen der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen. Ber Polarforsch 281:1–117Google Scholar
  28. Marret F (1993) Les effets de l’acétolyse sur les assemblages des kystes de dinoflagellés. Palynoscience 2:267–272Google Scholar
  29. Marret F, Leroy S, Chalié F, Gasse F (2004) New organic-walled dinoflagellate cysts from recent sediments of Central Asian seas. Rev Palaeobot Palynol 129:1–20CrossRefGoogle Scholar
  30. Marret F, Mudie P, Aksu AE, Hiscott RN (2009) A Holocene dinocyst record of a two-step transformation of the Neoeuxinic brackish water lake into the Black Sea. Quat Int 197:72–86CrossRefGoogle Scholar
  31. Marret F, Zonneveld KAF (2003) Atlas of modern organic-walled dinoflagellate cyst distribution. Rev Palaeobot Palynol 125:1–200Google Scholar
  32. Matthiessen J, Brenner W (1996) Chlorococcalalgen und Dinoflagellaten-Zysten in rezenten Sedimenten des Greifswalder Boddens (südliche Ostesee). Senckenberg Marit 27:33–48Google Scholar
  33. Matthiessen J, Kunz-Pirrung M, Mudie PJ (2000) Freshwater chlorophycean algae in recent marine sediments of the Beaufort, Laptev and Kara Seas (Arctic Ocean). Int J Earth Sci 89:470–485CrossRefGoogle Scholar
  34. Mee LD, Frederich J, Gomoiu MT (2005) Restoring the Black Sea in times of uncertainty. Oceanography 18:100–121Google Scholar
  35. Mertens KN, Ribeiro S, Bouimetarhan I, Caner H, Combourieu Nebout N, Dale B, De Vernal A, Ellegaard M, Filipova M, Godhe A, Goubert E, Grosfjeld K, Holzwarth U, Kotthoff U, Leroy SAG, Londeix L, Marret F, Matsuoka K et al (2009) Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy. Mar Micropaleontol 70:54–69CrossRefGoogle Scholar
  36. Morzadec-Kerfourn MT (2005) Interaction between sea-level changes and the development of littoral herbaceous vegetation and autotrophic dinoflagellates. Quat Int 133/134:137–140CrossRefGoogle Scholar
  37. Mudie PJ, Leroy SAG, Marret F, Gerasimenko N, Kholeif SEA, Sapelko T, Filipova-Marinova M (in press) Non-pollen palynomorphs (NPP): indicators of salinity and environmental change in the Caspian–Black Sea–Mediterranean Corridor. In: Buynevich I, Yanko-Hombach V, Smyntyna O, Martin R (eds) Geology and geoarchaeology of the Black Sea region: beyond the flood hypothesis, Chap 7. Don Siegel, Syracuse University, USAGoogle Scholar
  38. Mudie P, Marret F, Aksu AE, Hiscott RN, Gillespie H (2007) Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: centennial- to decadal-scale records from the Black and Marmara Seas. Quat Int 167/168:73–90CrossRefGoogle Scholar
  39. Mudie PJ, McCarthy FMG (2006) Marine palynology: potentials for onshore–offshore correlation of Pleistocene–Holocene records. Trans R Soc S Afr 61:139–158CrossRefGoogle Scholar
  40. Mudie PJ, Rochon A, Aksu AE, Gillespie H (2002) Dinoflagellate cysts, freshwater algae and fungal spores as salinity indicators in Late Quaternary cores from Marmara and Black seas. Mar Geol 190:203–231CrossRefGoogle Scholar
  41. Mudie PJ, Rochon A, Aksu AE, Gillespie H (2004) Late glacial, Holocene and modern dinoflagellate cyst assemblages in the Aegean–Marmara–Black Sea corridor: statistical analysis and reinterpretation of the early Holocene Noah’s Flood hypothesis. Rev Palaeobot Palynol 128:143–167CrossRefGoogle Scholar
  42. Muhsin TM, Booth T (1986) Fungi associated with halophytes of an inland salt marsh, Manitoba, Canada. Can J Bot 65:1,137–1,151CrossRefGoogle Scholar
  43. Murray JW, Stewart K, Kassakian S, Krynytzky M, DiJulio D (2007) Oxic, suboxic, and anoxic conditions in the Black Sea. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question: changes in coastline, climate and human settlement. Springer, Dordrecht, pp 1–22Google Scholar
  44. Nicholls KH (1997) Planktonic green algae in western Lake Erie: the importance of temporal scale in the interpretation of change. Freshw Biol 38:419–425CrossRefGoogle Scholar
  45. Pals JP, van Geel B, Delfos A (1980) Palaeocological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord Holland). Rev Palaeobot Palynol 30:371–418CrossRefGoogle Scholar
  46. Parke M, Boalch GT, Jowett R, Harbour DS (1978) The genus Pterosperma (Prasinophyceae): species with a single equatorial ala. J Mar Biol Assoc UK 58:239–276CrossRefGoogle Scholar
  47. Playford G (2003) Acritarchs and Prasinophyte phycomata: a short course. Contributions Series No 41, American Association of Stratigraphic Palynologist Foundation, TexasGoogle Scholar
  48. Reid PC, John AWG (1978) Tintinnid cysts. J Mar Biol Assoc UK 58:551–557CrossRefGoogle Scholar
  49. Reid PC, John AWG (1981) A possible relationship between chitinozoa and tintinnids. Rev Palaeobot Palynol 34:251–262CrossRefGoogle Scholar
  50. Roman S (1974) Palynoplanktologic analysis of some Black Sea cores. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 396–410Google Scholar
  51. Rossignol M (1964) Hystrichosphères du Quaternaire en Méditerranée orientale dans les sédiments pléistocènes et les boues marines actuelles. Rev Micropal 7:83–99Google Scholar
  52. Strother PK (1996) Chapter 15. Acritarchs. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 1. American Association of Stratigraphic Palynologist Foundation, Dallas, pp 81–106Google Scholar
  53. Takahashi K (1964) Microplankton from the Asagai Formation in the Joban coal-field. Trans Proc Palaeontol Soc Jpn NS 54:201–214Google Scholar
  54. Tissot BP, Welte DH (1978) Petroleum formation and occurrence. Springer, New YorkGoogle Scholar
  55. Tomas CR (1993) Marine phytoplankton. Academic Press, San DiegoGoogle Scholar
  56. Traverse A (1974) Palynological investigation of two Black Sea cores. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 381–388Google Scholar
  57. Traverse A (1978) Palynological analysis of DSDP Leg 42B (1975) cores from the Black Sea. In: Ross et al (eds) Initial reports of the Deep Sea Drilling Program, vol 42 (part 2). U.S. Government Printing Office, Washington, DC, pp 993–1,015Google Scholar
  58. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, Vol 3: Terrestrial, algal and silicious indicators. Kluwer, Dordrecht, pp 99–119Google Scholar
  59. Van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwig 82:313–329CrossRefGoogle Scholar
  60. Van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the Late-glacial type section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:25–129CrossRefGoogle Scholar
  61. Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol Bioeng 22:1,637–1,656CrossRefGoogle Scholar
  62. Wall D, Dale B (1974) Dinoflagellates in Late Quaternary deep-water sediments of Black Sea. In: Degens ET, Ross DA (eds) The Black Sea: geology, chemistry, and biology. American Association of Petroleum Geologists, Memoir 20, Tulsa, pp 364–380Google Scholar
  63. Wall D, Dale B, Harada K (1973) Description of new fossil dinoflagellates from the Late Quaternary of the Black Sea. Micropaleo 19:18–31CrossRefGoogle Scholar
  64. Warner B (1990) Testate amoebae (protozoa). Geoscience Canada Reprint Series 5. Geological Association Canada, St. Johns, pp 65–74Google Scholar
  65. Wolff H (1934) Mikrofossilien des pliocaenen Humodils der Grube Freigericht bei Dettingen a. M. und Vergleich mit älteren Schichten des Tertiärs sowie posttertiären Ablagerungen. Arb Inst Paläobot Petrogr Brennsteine 5:55–86Google Scholar
  66. Yanko-Hombach V (2007) Controversy over Noah’s Flood in the Black Sea: geological and foraminiferal evidence from the shelf. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (eds) The Black Sea flood question. Springer, Dordrecht, pp 149–204CrossRefGoogle Scholar
  67. Zonneveld KAF, Bockelmann FD, Holzwarth U (2007) Selective preservation of organic-walled dinoflagellate cysts as a tool to quantify past net primary production and bottom water oxygen concentrations. Mar Geol 237:109–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Peta J. Mudie
    • 1
    • 4
    Email author
  • Fabienne Marret
    • 2
  • André Rochon
    • 3
  • Ali E. Aksu
    • 4
  1. 1.Geological Survey of Canada-AtlanticNatural Resources CanadaDartmouthCanada
  2. 2.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.Université du Québec à RimouskiRimouskiCanada
  4. 4.Earth Science DepartmentMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations