Advertisement

Vegetation History and Archaeobotany

, Volume 19, Issue 4, pp 351–364 | Cite as

Estimating absolute pollen productivity for some European Tertiary-relict taxa

  • Mariana V. Filipova-Marinova
  • Eliso V. Kvavadze
  • Simon E. ConnorEmail author
  • Per Sjögren
Original Article

Abstract

Tertiary-relict plants are survivors from the pre-Quaternary periods. Today, most European Tertiary relicts are confined to small, isolated stands distributed in the Mediterranean and Black Sea regions. In the past, however, the fossil record indicates that these species were probably distributed over large parts of the European continent and may have been important constituents of the vegetation. Little is known about their pollen representation, which limits our ability to reconstruct this past vegetation with any accuracy. This paper draws on the results of pollen trapping experiments in Bulgaria and Georgia, where relict stands of Aesculus hippocastanum, Cercis siliquastrum, Fagus orientalis, Juglans regia and Pterocarya fraxinifolia are still in existence. We compared average pollen accumulation rates (PAR) to vegetation data from around the trapping locations to derive estimates of absolute pollen productivity using various pollen dispersal functions. Composite dispersal functions that model pollen components carried above the vegetation canopy and falling as rain provided better relationships between PAR and plant abundance than functions that consider only a single component or the ‘trunk-space’ component carried under the canopy. A composite dispersal function with a simple model for regional pollen and the best overall correlation statistics gave the following estimates of absolute pollen productivity (grains cm−2 yr−1 with 1 SE intervals): Carpinus betulus 19,000–28,700; Fagus orientalis 15,600–20,400; Juglans regia 27,200–36,200; Pterocarya fraxinifolia 182,000–192,600; Quercus spp. 21,700–24,800; Tilia begoniifolia 51,600–68,300; and T. tomentosa 14,700–18,200. These estimates were applied to fossil data from the Black Sea coast to reconstruct palaeovegetation using absolute and relative methods.

Keywords

Pollen dispersal models Absolute pollen production Pollen traps Palaeovegetation reconstruction Georgia Bulgaria 

Notes

Acknowledgements

The authors would like to dedicate this paper to Sheila Hicks, for her vision in establishing the Pollen Monitoring Programme (PMP) and her untiring enthusiasm in guiding its development over the years. Many thanks to the local directors of the State Forestry Agency of Bulgaria for allowing us to use their forest composition data, to Shota Eriashvili for his invaluable assistance with fieldwork, to Antti Huusko for practical advice on applying Sutton’s equation, to Christoph Sperisen for helping with the map, and to Marta for her patience during vegetation surveys in Lagodekhi. We are grateful to Pim van der Knaap for his constant encouragement and to the reviewers Anne Birgitte Nielsen, Thomas Giesecke and Jane Bunting for their helpful comments on the manuscript, which is a contribution to the PMP, IGCP 521 and ARC LP0989901.

References

  1. Andersen ST (1970) The relative pollen productivity and pollen representation of North European trees, and correction factors for tree pollen spectra, determined by surface pollen analyses from forests. Danmarks Geologiske Undersøgelse 96:1–99Google Scholar
  2. Andrieu V, Field MH, Ponel P, Guiot J, Guenet P, de Beaulieu JL, Reille M, Morzadec-Kerfourn MT (1997) Middle Pleistocene temperate deposits at Dinge, Ille-et-Vilaine, northwest France: pollen, plant and insect macrofossil analysis. J Quat Sci 14:309–331CrossRefGoogle Scholar
  3. Autio J, Hicks S (2004) Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: potential for using fossil pollen as a climate proxy. Grana 43:31–47CrossRefGoogle Scholar
  4. Avtzis ND, Avtzis DN, Vergos SG, Diamandis S (2007) A contribution to the natural distribution of Aesculus hippocastanum (Hippocastanaceae) in Greece. Phytologia Balcanica 13:183–187Google Scholar
  5. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  6. Bodmer H (1922) Über den Windpollen. Natur und Technik 3:294–298Google Scholar
  7. Broström A, Nielsen AB, Gaillard M-J, Hjelle K, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska A, Räsänen S, Soepboer W, von Stedingk H, Suutari H, Sugita S (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veget Hist Archaeobot 17:461–478CrossRefGoogle Scholar
  8. Browicz K (1982–1994) Chorology of trees and shrubs in South-West Asia and adjacent regions (6 vols.). Polish Scientific Publishers, WarszawaGoogle Scholar
  9. Carrión JS, Sánchez-Gómez P (1992) Palynological data in support of the survival of walnut (Juglans regia L.) in the western Mediterranean during last glacial times. J Biogeogr 19:623–630CrossRefGoogle Scholar
  10. Chamberlain AC (1975) The movement of particles in plant communities. In: Monteith JL (ed) Vegetation and the atmosphere, vol 1. Academic Press, New York, pp 155–203Google Scholar
  11. Connor SE, Thomas I, Kvavadze EV (2007) A 5600-yr history of changing vegetation, sea levels and human impacts from the Black Sea coast of Georgia. Holocene 17:25–36CrossRefGoogle Scholar
  12. Davis MB (2000) Palynology after Y2K—understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci 28:1–18CrossRefGoogle Scholar
  13. de Beaulieu JL (1972) Analyses polliniques des tourbes éémiennes de Saint-Paul-lez-Durance (Bouches-du-Rhône). Bulletin de l’Association française pour l’étude du Quaternaire 3:195–206CrossRefGoogle Scholar
  14. De Klerk P, Haberl A, Kaffke A, Krebs M, Matchutadze I, Minke M, Schulz J, Joosten H (2009) Vegetation history and environmental development since ca 6000 cal yr b.p. in and around Ispani 2 (Kolkheti lowlands, Georgia). Quat Sci Rev 28:890–910CrossRefGoogle Scholar
  15. Denk T, Frotzler N, Davitashvili N (2001) Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biol J Linn Soc 72:287–332CrossRefGoogle Scholar
  16. Denk T, Grimm G, Stögerer K, Langer M, Hemleben V (2002) The evolutionary history of Fagus in western Eurasia: evidence from genes, morphology and the fossil record. Plant Syst Evol 232:213–236CrossRefGoogle Scholar
  17. Dolukhanov AG (1989) Lesnaia rastitel’nost’ Gruzii, I (Forest vegetation of Georgia, volume I). Metsniereba, TbilisiGoogle Scholar
  18. Dyakowska J (1936) Researches on the rapidity of the falling down of pollen of some trees. Bull Acad Polon Sci B1:155–168Google Scholar
  19. Dyakowska J, Zurzycki J (1959) Gravimetric studies on pollen. Bull Acad Polon Sci 7:11–16Google Scholar
  20. Dzhavakhishvili AN (ed) (1964) Atlas Gruzinskoi SSR (Atlas of the Georgian SSR). GUGK, TbilisiGoogle Scholar
  21. Edwards TL, Crucifix M, Harrison SP (2007) Using the past to constrain the future: how the palaeorecord can improve estimates of global warming. Prog Phys Geogr 31:481–500CrossRefGoogle Scholar
  22. Eisenhut G (1961) Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume. Forstwiss Forsch 15:1–68Google Scholar
  23. Field MH, de Beaulieu JL, Guiot J, Ponel P (2000) Middle Pleistocene deposits at La Cote, Val-de-Lans, Isere department, France: plant macrofossil, palynological and fossil insect investigations. Palaeogeogr Palaeoclimatol Palaeoecol 159:53–83CrossRefGoogle Scholar
  24. Gogichaishvili LK (1984) Vegetational and climatic history of the western part of the Kura River basin. In: Bintliff JL, van Zeist W (eds) Paleoclimates, paleoenvironments, and human communities in the Eastern Mediterranean region in later prehistory. B.A.R. International Series, Oxford, pp 325–341Google Scholar
  25. Guiter F, Andrieu-Ponel V, de Beaulieu JL, Nicoud G, Ponel P, Blavoux B, Gandouin E (2008) Palynostratigraphy of some Pleistocene deposits in the Western Alps: a review. Quat Int 190:10–25CrossRefGoogle Scholar
  26. Hicks S, Tinsley H, Huusko A, Jensen C, Hättestrand M, Gerasimides A, Kvavadze E (2001) Some comments on spatial variation in arboreal pollen deposition: first records from the Pollen Monitoring Programme (PMP). Rev Palaeobot Palynol 117:183–194CrossRefGoogle Scholar
  27. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps for Europe: 0–13 000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  28. Huusko A, Hicks S (2009) Conifer pollen abundance provides a proxy for summer temperature: evidence from the latitudinal forest limit in Finland. J Quat Sci 24:522–528CrossRefGoogle Scholar
  29. Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters, and prescriptions. Bot Rev 65:39–75CrossRefGoogle Scholar
  30. Jacobson GL Jr, Bradshaw RHW (1981) The selection of sites for palaeovegetational studies. Quat Res 16:80–96CrossRefGoogle Scholar
  31. Janssen CR (1966) Recent pollen spectra from the deciduous and coniferous-deciduous forests of northeastern Minnesota: a study in pollen dispersal. Ecology 47:804–825CrossRefGoogle Scholar
  32. Knoll F (1932) Über die Fernverbreitung des Blütenstaubes durch den Wind. Forschungen und Fortschritte: Nachrichtenbl Deutsch Wiss Tech 8:301–302Google Scholar
  33. Kolakovskii AA (ed) (1973) Katalog iskopaemykh rastenii Kavkaza (Catalogue of fossil plants of the Caucasus). Metsniereba, TbilisiGoogle Scholar
  34. Kvavadze EV (1993) On the interpretation of subfossil spore-pollen spectra in the mountains. Acta Palaeobot 33:347–360Google Scholar
  35. Kvavadze EV (1999) The first results of the pollen monitoring programme in the Caucasus mountains (Georgia). Acta Palaeobot 39:171–177Google Scholar
  36. Leroy SAG (2008) Vegetation cycles in a disturbed sequence around the Cobb-Mountain subchron in Catalonia (Spain). J Paleolimnol 40:851–868CrossRefGoogle Scholar
  37. Mai DH (1989) Development and regional differentiation of the European vegetation during the Tertiary. Plant Syst Evol 162:79–91CrossRefGoogle Scholar
  38. Maley J (1980) Les changements climatiques de la fin du Tertiaire en Afrique: leur conséquence sur l’apparition du Sahara et de sa végétation. In: Williams MAJ, Faure H (eds) The Sahara and the Nile: quaternary environments and prehistoric occupation in northern Africa. Balkema, Rotterdam, pp 63–86Google Scholar
  39. Markgraf V (1980) Pollen dispersal in a mountain area. Grana 19:127–146CrossRefGoogle Scholar
  40. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  41. Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes at c. AD 1800: an attempt to validate the POLLSCAPE model. J Biogeogr 31:1,693–1,709CrossRefGoogle Scholar
  42. Paffetti D, Vettori C, Caramelli D, Vernesi C, Lari M, Paganelli A, Paule L, Giannini R (2007) Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evol Biol 7(suppl 2):S6CrossRefGoogle Scholar
  43. Persson A (1955) Frequenzen von Kiefernpollen in Südschweden in 1953 und 1954. Forstgenetik und Forstpflanzenzucht 4:129–137Google Scholar
  44. Postigo Mijarra JM, Manzaneque FG, Morla C (2008) Survival and long-term maintenance of Tertiary trees in the Iberian Peninsula during the Pleistocene: first record of Aesculus L. (Hippocastanaceae) in Spain. Veget Hist Archaeobot 17:351–364CrossRefGoogle Scholar
  45. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86CrossRefGoogle Scholar
  46. Prentice IC (1986) Multivariate methods for data analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 775–797Google Scholar
  47. Ravazzi C (2003) Gli antichi bacini lacustri e i fossili di Leffe, Ranica e Pianico-Sèllere (Prealpi Lombarde). Istituto per la Dinamica dei Processi Ambientali, BergamoGoogle Scholar
  48. Rempe H (1937) Untersuchungen über die Verbreitung des Blütenstaubes durch die Luftströmungen. Planta 27:93–147CrossRefGoogle Scholar
  49. Shatilova II, Mchedlishvili NS (1980) Palinologicheskie kompleksy Chaudinskikh otlozhenii Zapadnoi Gruzii i ikh stratigraficheskoe znachenie (Palynological complexes of Chaudian sediments in Western Georgia and their stratigraphic significance). Metsniereba, TbilisiGoogle Scholar
  50. Shatilova II, Rukhadze L, Mchedlishvili N (2008) The results of palaeobotanical investigations of Meotian deposits of Western Georgia. In: Vekua A (ed) Problems of palaeobiology, vol 3. Georgian National Museum press, Tbilisi, pp 23–34Google Scholar
  51. Sjögren P, van der Knaap WO, Huusko A, van Leeuwen JFN (2008) Pollen productivity, dispersal, and correction factors for major tree taxa in the Swiss Alps based on pollen-trap results. Rev Palaeobot Palynol 152:200–210CrossRefGoogle Scholar
  52. Sjögren P, Connor SE, van der Knaap WO (2010) The development of composite dispersal functions for estimating absolute pollen productivity in the Swiss Alps. Veget Hist Archaeobot 19 (this volume). doi: 10.1007/s00334-010-0247-1
  53. Soepboer W, Sugita S, Lotter AF, van Leeuwen JFN, van der Knaap WO (2007) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 17:65–77CrossRefGoogle Scholar
  54. Suc JP (1980) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432CrossRefGoogle Scholar
  55. Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244CrossRefGoogle Scholar
  56. Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421CrossRefGoogle Scholar
  57. Sugita S, Hicks S, Sormunen H (2009) Absolute pollen productivity and pollen-vegetation relationships in northern Finland. J Quat Sci. doi: 10.1002/jqs.1349
  58. Sutton OG (1953) Micrometeorology. McGraw-Hill, New YorkGoogle Scholar
  59. Svenning J-C (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653CrossRefGoogle Scholar
  60. Tauber H (1965) Differential pollen dispersion and the interpretation of pollen diagrams. Danmarks Geologiske Undersøgelse, II Række: 89Google Scholar
  61. Van der Knaap WO, van Leeuwen JFN, Ammann B (2001) Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Rev Palaeobot Palynol 117:31–52CrossRefGoogle Scholar
  62. Vulkov I (ed) (1973) Atlas Narodna Republika Bulgariia (Atlas of the People’s Republic of Bulgaria). GUGK, SofiaGoogle Scholar
  63. Wang C-W, Perry TO, Johnson AG (1960) Pollen dispersion of slash pine (Pinus elliottii Engelm.) with special reference to seed orchard management. Silvae Genet 9:78–86Google Scholar
  64. Willis KJ, Niklas KJ (2004) The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Phil Trans R Soc B359:159–172Google Scholar
  65. Wright JW (1952) Pollen dispersion of some forest trees. Northeastern Forest Experiment Station Paper No. 46, US Department of Agriculture, Upper Darby PA, 42 ppGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mariana V. Filipova-Marinova
    • 1
  • Eliso V. Kvavadze
    • 2
  • Simon E. Connor
    • 3
    Email author
  • Per Sjögren
    • 4
  1. 1.Department of Natural HistoryVarna Regional Museum of HistoryVarnaBulgaria
  2. 2.Davitashvili Institute of PaleobiologyNational Museum of GeorgiaTbilisiGeorgia
  3. 3.Centre for Marine and Environmental ResearchFCT, University of the AlgarveFaroPortugal
  4. 4.Department of Natural SciencesTromsø University MuseumTromsøNorway

Personalised recommendations