Vegetation History and Archaeobotany

, Volume 19, Issue 5–6, pp 427–438 | Cite as

Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland

  • Emilie Gauthier
  • Vincent Bichet
  • Charly Massa
  • Christophe Petit
  • Boris Vannière
  • Hervé Richard
Original Article


Radiocarbon dating, pollen and non-pollen palynomorph analyses from a lake core were used to establish the timing and effects of farming activities around Lake Igaliku, Eastern Settlement, Greenland. The absence of agro-pastoral impact before the medieval colonization by Europeans provides an opportunity to understand the development of farming activity in a pristine landscape. The results show that the first phase of clearance and grazing pressure, without the expansion of the Norse apophyte (native plant, in habitats created by humans) Rumex acetosa type, could have occurred in the 9–10th century a.d. The presence of Norse settlers and livestock is clearly recorded from the 11–12th century a.d. with increasing frequencies of the Norse apophytes Rumex acetosa type and Ranunculus acris type, and coprophilous fungi. This colonization phase is followed by a period of decreasing human impact at the beginning of the 14th century, with a decrease in weeds, apophytes and coprophilous fungi suggesting a reduced grazing pressure. The regrowth of Salix and Betula and the disappearance of anthropogenic indicators except Rumex acetosa type between the 15th and 18th century demonstrate the abandonment of the settlement, until the development of contemporary agriculture in the 20th century.


Non-pollen palynomorphs Palynology Grazing pressure Greenland 



We thank all the people who have participated in this project. Bruno Regent and Agnès Stock for the technical preparation of the coring campaign, Hervé Grisey and Michel Campy for technical help in Greenland, Julien Didier for pollen preparation, Jean Nicolas Haas, José S. Carrión, José Antonio Lopez Saez, André Aptroot, Antonella Miola and Bas van Geel for their help in the determination of non-pollen palynomorphs. Thanks also go to Carmela Smith and Patricia Alexandre for reading and English improvement. Many thanks to Arnarq Motzfeld, farmer in Søndre Igaliku, for the collection of dung samples in September 2008. Coring campaign, palynological and sedimentological investigations were funded by the University of Franche-Comté, the University of Burgundy (France), the French National Centre of Scientific Research (CNRS) and the French Polar Institute (IPEV).


  1. Abbott MB, Stafford TW (1996) Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311CrossRefGoogle Scholar
  2. Adderley WP, Simpson IA (2006) Soils and palaeo-climate based evidence for irrigation requirements in Norse Greenland. J Archaeol Sci 33:1,666–1,679Google Scholar
  3. Algreen-Møller N, Madsen CK (2006) Nordboerne i Vatnahverfi. Rapport om rekognoscering og opmåling af nordboruiner i Vatnahverfi sommeren 2005. SILA field report 24Google Scholar
  4. Amorosi T, Buckland P, Dugmore A, Ingimundarson JH, McGovern TH (1997) Raiding the landscape: human impact in the Scandinavian North Atlantic. Hum Ecol 25:491–518CrossRefGoogle Scholar
  5. Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Rev Palaeobot Palynol 141:225–230CrossRefGoogle Scholar
  6. Arneborg J (2005) Greenland irrigation systems on a west Nordic background. An overview of the evidence of irrigation systems in Norse Greenland c. 980–1450 A.D. Pamatky Archeologicke Supplementum 17. Ruralia 5:137–145Google Scholar
  7. Arneborg J, Heinemeier J, Lynnerup N, Nielsen HL, Rud N, Sveinbjörnsdóttir ÁE (1999) Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41:157–168Google Scholar
  8. Arneborg J, Heinemeier J, Lynnerup N, Nielsen HL, Rud N, Sveinbjörnsdóttir ÁE (2002) C-14 dating and the disappearance of Norsemen from Greenland. Europhys News May/June:77–80Google Scholar
  9. Barlow LK, Sadler JP, Ogilvie AEJ, Buckland PC, Amorosi T, Ingimundarson JH, Skidmore P, Dugmore AJ, McGovern TH (1997) Interdisciplinary investigations of the end of the Norse Western Settlement in Greenland. Holocene 7:489–499CrossRefGoogle Scholar
  10. Bell A (1983) Dung fungi. An illustrated guide to coprophilous fungi in New Zealand. Victoria University Press, WellingtonGoogle Scholar
  11. Bell A (2005) An illustrated guide to the coprophilous Ascomycetes of Australia. CBS Biodivers Ser 3:1–172Google Scholar
  12. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  13. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy; the OxCal program. Radiocarbon 37:425–430Google Scholar
  14. Bronk Ramsey C (2001) Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–363Google Scholar
  15. Buckland PC, Edwards KJ, Panagiotakopulu E, Schofield JE (2009) Palaeoecological and historical evidence for manuring and irrigation at Garðar (Igaliku), Norse Eastern Settlement, Greenland. Holocene 19:105–116CrossRefGoogle Scholar
  16. Cappelen J, Jørgensen BV, Laursen EV, Stannius LS, Thomsen RS (2001) The observed climate of Greenland, 1958–99—with climatological standard normals, 1961–90. Danish Meteorological Institute, Technical report, CopenhagenGoogle Scholar
  17. Carrión JS (2002a) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2,047–2,066CrossRefGoogle Scholar
  18. Carrión JS (2002b) A taphonomic study of modern pollen assemblages from dung and surface sediments in arid environments of Spain. Rev Palaeobot Palynol 120:217–232CrossRefGoogle Scholar
  19. Carrión JS, Sánchez-Gómez P, Mota JF, Yll R, Chaín C (2003) Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. Holocene 13:839–849CrossRefGoogle Scholar
  20. Commisso RG, Nelson DE (2007) Patterns of plant [delta]15N values on a Greenland Norse farm. J Archaeol Sci 34:440–450CrossRefGoogle Scholar
  21. Commisso RG, Nelson DE (2008) Correlation between modern plant [delta]15N values and activity areas of Medieval Norse farms. J Archaeol Sci 35:492–504CrossRefGoogle Scholar
  22. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–276CrossRefGoogle Scholar
  23. Dansgaard W, Johnsen SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU (1975) Climatic changes, Norsemen and modern man. Nature 255:24–28CrossRefGoogle Scholar
  24. Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50CrossRefGoogle Scholar
  25. Dugmore AJ, Church MJ, Buckland PC, Edwards KJ, Lawson I, McGovern TH, Panagiotakopulu E, Simpson IA, Skidmore P, Sveinbjarnardóttir G (2005) The Norse landnám on the North Atlantic islands: an environmental impact assessment. Polar Rec 41:21–37CrossRefGoogle Scholar
  26. Edwards KJ, Schofield JE, Mauquoy D (2008) High resolution palaeoenvironmental and chronological investigations of Norse landnam at Tasiusaq Eastern Settlement, Greenland. Quat Res 69:1–15CrossRefGoogle Scholar
  27. Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  28. Fredskild B (1973) Studies in the vegetational history of Greenland. Meddelelser om Grønland 198:1–245Google Scholar
  29. Fredskild B (1978) Paleobotanical investigations of some peat deposits of Norse age at Qagissiarssuk, South Greenland. Meddelelser om Grønland 204:1–41Google Scholar
  30. Fredskild B (1992) Erosion and vegetational changes in South Greenland caused by agriculture. Geografisk Tidsskrift 92:14–21Google Scholar
  31. Graf MT, Chmura GL (2006) Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Rev Palaeobot Palynol 141:139–149CrossRefGoogle Scholar
  32. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  33. Grimm EC (1991) TILIA and TILIA*GRAPH. Illinois State MuseumGoogle Scholar
  34. Guldager O, Stummann Hansen S, Gleie S (2002) Medieval farmsteads in Greenland. The Brattahlid region 1999–2000. Danish Polar Center, CopenhagenGoogle Scholar
  35. Hannon GE, Bradshaw RHW (2000) Impacts and timing of the first human settlement on vegetation of the Faroe Islands. Quat Res 54:404–413CrossRefGoogle Scholar
  36. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  37. Isarin RFB, Bohncke SJP (1999) Mean July temperatures during the Younger Dryas in northwestern and central Europe as inferred from climate indicator plant species. Quat Res 51:158–173CrossRefGoogle Scholar
  38. Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot 35:59–82CrossRefGoogle Scholar
  39. Kaplan MR, Wolfe AP, Miller GH (2002) Holocene environmental variability in southern Greenland inferred from lake sediments. Quat Res 58:149–159CrossRefGoogle Scholar
  40. Keller C (1990) Vikings in the West Atlantic: a model of Norse Greenlandic Medieval Society. Acta Archaeol 61:126–141Google Scholar
  41. Kuijpers A, Abrahamsen N, Hoffmann G, Hühnerbach V, Konradi P, Kunzendorf H, Mikkelsen N, Thiede J, Weinrebe W (1999) Climate change and the Viking-age fjord environment of the Eastern Settlement, South Greenland. Geol Greenl Surv Bull 183:61–67Google Scholar
  42. Lassen SJ, Kuijpers A, Kunzendorf H, Hoffmann-Wieck G, Mikkelsen N, Konradil P (2004) Late-Holocene Atlantic bottom-water variability in Igaliku Fjord, South Greenland, reconstructed from foraminifera faunas. Holocene 14:165–171CrossRefGoogle Scholar
  43. Lawson IT, Gathorne-Hardy F, Church MJ, Newton AJ, Edwards KJ, Dugmore AJ, Einarsson A (2007) Environmental impacts of the Norse settlement: palaeoenvironmental data from Mỳvatnssveit, northern Iceland. Boreas 36:1–19Google Scholar
  44. Lynnerup N (1996) Paleodemography of the Greenland Norse. Arct Anthropol 33:122–136Google Scholar
  45. McGovern T (1991) Climate correlation and causation in Norse Greenland. Arct Anthropol 28:77–100Google Scholar
  46. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlèn W (2005) Highly variable northern hemisphere temperatures from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  47. Moe D (1983) Palynology of sheep’s faeces: relationship between pollen content, diet and local pollen rain. Grana 22:105–113CrossRefGoogle Scholar
  48. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, OxfordGoogle Scholar
  49. Norlund P (1929) Norse ruins at Garðar: the Episcopal seat of mediaeval Greenland. Meddelelser om Grønland 76:1–171Google Scholar
  50. Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc B 363:2,369–2,375CrossRefGoogle Scholar
  51. Reille M (1992) Pollen et spores d’Europe et d’Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, MarseilleGoogle Scholar
  52. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) IntCal04 Terrestrial radiocarbon age calibration 0–26 cal Kyr BP. Radiocarbon 46:1,029–1,058Google Scholar
  53. Ross JM, Zutter C (2007) Comparing Norse animal husbandry practices: paleoethnobotanical analyses from Iceland and Greenland. Arct Anthropol 41:62–85Google Scholar
  54. Rybníčková E, Rybníček K (2006) Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Veget Hist Archaeobot 15:345–356CrossRefGoogle Scholar
  55. Sandgren P, Fredskild B (1991) Magnetic measurements recording Late Holocene man-induced erosion in South Greenland. Boreas 20:315–331CrossRefGoogle Scholar
  56. Schofield JE, Edwards KJ, Christensen C (2007a) Environmental impacts around the time of Norse landnám in the Qorlortoq valley Eastern Settlement Greenland. J Archaeol Sci 35:1,643–1,657Google Scholar
  57. Schofield JE, Edwards KJ, McMullen JA (2007b) Modern pollen–vegetation relationships in subarctic southern Greenland and the interpretation of fossil pollen data from the Norse landnám. J Biogeogr 34:473–488CrossRefGoogle Scholar
  58. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 delta 18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354CrossRefGoogle Scholar
  59. Turton CL, McAndrews JH (2006) Rotifer loricas in second millennium sediment of Crawford Lake, Ontario, Canada. Rev Palaeobot Palynol 141:1–6CrossRefGoogle Scholar
  60. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  61. van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments (terrestrial, algal and silicaceous indicators), vol 3. Kluwer, Dordrecht, pp 99–119CrossRefGoogle Scholar
  62. van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82:313–329CrossRefGoogle Scholar
  63. van Geel B, Bohncke SJP, Dee H (1981) A palaeoecological study of an Upper Late Glacial and Holocene sequence from ‘De Borchert’, The Netherlands. Rev Palaeobot Palynol 31:367–448Google Scholar
  64. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenena G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  65. Vors LS, Boyce MS (2009) Global declines of caribou and reindeer. Glob Chang Biol 15:2,626–2,633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Emilie Gauthier
    • 1
  • Vincent Bichet
    • 2
  • Charly Massa
    • 2
  • Christophe Petit
    • 3
  • Boris Vannière
    • 2
  • Hervé Richard
    • 2
  1. 1.UFR Sciences du Langage, de l’Homme et de la Société.CNRS-Université de Franche-Comté/UMR 6249 Chrono-EnvironnementBesançon CedexFrance
  2. 2.CNRS-Université de Franche-Comté/UMR 6249 Chrono-EnvironnementBesançon CedexFrance
  3. 3.CNRS-Université de Bourgogne/UMR 5594 ArtehisDijonFrance

Personalised recommendations