Advertisement

Vegetation History and Archaeobotany

, Volume 19, Issue 3, pp 219–233 | Cite as

A new Late-glacial and Holocene record of vegetation and fire history from Lago del Greppo, northern Apennines, Italy

  • Elisa VescoviEmail author
  • Brigitta Ammann
  • Cesare Ravazzi
  • Willy Tinner
Original Article

Abstract

Detailed Late-glacial and Holocene palaeoenvironmental records from the northern Apennines with a robust chronology are still rare, though the region has been regarded as a main area of potential refugia of important trees such as Picea abies and Abies alba. We present a new high-resolution pollen and stomata record from Lago del Greppo (1,442 m a.s.l., Pistoia, northern Apennines) that has been dated relying on 12 terrestrial plant macrofossils. Late-glacial woodlands became established before 13000 cal b.p. and were dominated by Pinus and Betula, although more thermophilous taxa such as Quercus, Tilia and Ulmus were already present in the Greppo area, probably at lower altitudes. Abies and Picea expanded locally at the onset of the Holocene at ca. 11500 cal b.p. Fagus sylvatica was the last important tree to expand at ca. 6500 cal b.p., following the decline of Abies. Human impact was generally low throughout the Holocene, and the local woods remained rather closed until the most recent time, ca. a.d. 1700–1800. The vegetational history of Lago del Greppo appears consistent with that of previous investigations in the study region. Late-glacial and Holocene vegetation dynamics in the northern Apennines are very similar to those in the Insubrian southern Alps bordering Switzerland and Italy, across the Po Plain. Similarities between the two areas include the Late-glacial presence of Abies alba, its strong dominance during the Holocene across different vegetation belts from the lowlands to high elevations, as well as its final fire and human-triggered reduction during the mid Holocene. Our new data suggest that isolated and minor Picea abies populations survived the Late-glacial in the foothills of the northern Apennines and that at the onset of the Holocene they moved upwards, reaching the site of Lago del Greppo. Today stands of Picea abies occur only in two small areas in the highest part of the northern Apennines, and they have become extinct elsewhere. Given the forecast global warming, these relict Picea abies stands of the northern Apennines, which have a history of at least 13,000 years, appear severely endangered.

Keywords

Northern Apennines Late-glacial Holocene Pollen analysis Abies alba Picea abies 

Notes

Acknowledgements

We are grateful to the participants to the XXX International Moor Excursion that visited the site in 2006 for fruitful discussions and useful suggestions and especially for the advice of F. Bittmann for improving the Late-glacial chronology. M. Donegana, G. Tanzi, L. Pacifico, H.E. Wright, Willi and Mike Tanner are gratefully acknowledged for help during coring and F. Oberli for laboratory assistance. Improvements to the manuscript by H.E. Wright and two anonymous reviewers are grateful acknowledged. We are grateful to Swiss National Science Foundation, which financed this study (SNF Nr3100A0-101218) and to Corpo Forestale dello Stato—Ufficio Territoriale per la Biodiversità di Pistoia and “le Guardie forestali del Posto Fisso dell’Abetone” for the permission and for assistance during the coring.

References

  1. Ammann B, Birks HJB, Drescher-Schneider R, Juggins S, Lang G, Lotter AF (1993) Patterns of variation in Late-glacial pollen stratigraphy along a Northwest–Southeast transect through Switzerland—a numerical analysis. Quat Sci Rev 12:277–286CrossRefGoogle Scholar
  2. Ammann B, Birks HJB, Brooks SJ, Eicher U, von Grafenstein U, Hofmann W, Lemdahl G, Schwander J, Tobolski K, Wick L (2000) Quantification of biotic responses to rapid climatic changes around the Younger Dryas—a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 159:313–347CrossRefGoogle Scholar
  3. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  4. Bertolani Marchetti D, Accorsi CA, Bandini Mazzanti M, Dallai D, Forlani L, Mariotti Lippi M, Mercuri AM, Mori M, Rivalenti C, Trevisan Grandi G (1994) Palynological diagram of the peat-bog near Pavullo nel Frignano (Modena, Italy) in the framework of Tuscan/Emilian Apennines vegetation history. Hist Biol 9:91–101CrossRefGoogle Scholar
  5. Bertoldi R (1980) Le vicende vegetazionali e climatiche nella sequenza paleobotanica wurmiana e post-wurmiana di Lagdei (Appennino settentrionale). Ateneo Parmense Acta Nat 16:147–175Google Scholar
  6. Bertoldi R, Chelli A, Roma R, Tellini C, Vescovi P (2004) First remarks on Late Pleistocene lacustrine deposits in the Berceto area (Northern Apennines, Italy). Il Quaternario 17:133–143Google Scholar
  7. Bertoldi R, Chelli A, Roma R, Tellini C (2007) New data from Northern Apennines (Italy) pollen sequences spanninng the last 30,000 yrs. Il Quaternario 20:3–20Google Scholar
  8. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  9. Birks HH, Ammann B (2000) Two terrestrial records of rapid climatic change during the glacial-Holocene transition (14,000–9,000 calendar years b.p.) from Europe. Proc Natl Acad Sci 97:1390–1394CrossRefGoogle Scholar
  10. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, LondonGoogle Scholar
  11. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10Google Scholar
  12. Björck S, Walker MJC, Cwynar LC, Johnsen S, Knudesen K-L, Lowe JJ, Wohlfarth B, INTIMATE members (1998) An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J Quat Sci 13:283–292CrossRefGoogle Scholar
  13. Braggio Morucchio G, Guido AM (1975) Analisi palinologica dei depositi lacustri postglaciali del Lago delle Agoraie di Mezzo. Archivio Botanico e Biogeografico Italiano 20:48–73Google Scholar
  14. Braggio Morucchio G, Guido AM, Montanari C (1978) Studio palinologico e vegetazionale della torbiera del Lajone presso Pianpaludo (Gruppo M.Beigua, Appennino ligure occidentale). Archivio Botanico e Biogeografico Italiano 54:115–136Google Scholar
  15. Braggio Morucchio G, Guido AM, Monatanari C (1980) Studio palinologico dei sedimenti postglaciali dei Fociomboli (Alpi Apuane). Atti Soc Tosc Sci Nat Mem Serie B 87:220–227Google Scholar
  16. Branch N (2004) Late Würm Lateglacial and Holocene environmental history of the Ligurian Apennines, Italy. In: Balzaretti R, Pearce M, Watkins C (eds) Ligurian landscapes: studies in archaeology, geography and history in memory of Edoardo Grendi, vol 10. Accordia Research Institute, pp 7–69Google Scholar
  17. Castelletti L, Maspero A, Tozzi C (1994) Il popolamento della Valle del Serchio (Toscana Settentrionale) durante il Tardiglaciale Wurmiano e l’Olocene antico. In: Biagi P, Nandris J (eds) Highland zone exploitation in southern Europe, vol 20. Monografie di Natura Bresciana, Brescia, pp 189–204Google Scholar
  18. Chiarugi A (1936a) Ricerche sulla vegetazione dell’Etruria Marittima I.–Cicli forestali Postglaciali nell’Appennino Etrusco attraverso l’analisi pollinica di torbe e depositi lacustri presso L’Alpe delle Tre Potenze e il M. Rondinaio. Nuovo Giornale Botanico Italiano, n.s. 63:3–61Google Scholar
  19. Chiarugi A (1936b) Ricerche sulla vegetazione dell’Etruria Marittima III.—L’indigenato della “Picea excelsa” Lk. nell’Appennino Etrusco. Nuovo Giornale Botanico Italiano, n.s. 63:131–166Google Scholar
  20. Chiarugi A (1958) Ricerche sulla vegetazione dell’Etruria Marittima. XI: Una seconda aera relitta di vegetazione spontanea di pigella (Picea excelsa LK.) sull’Appennino settentrionale. Nuovo Giornale Botanico Italiano 65:23–41Google Scholar
  21. Colombaroli D, Marchetto A, Tinner W (2007) Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J Ecol 95:755–770CrossRefGoogle Scholar
  22. Cruise GM (1990a) Holocene peat initiation in the Ligurian Apennines, northern Italy. Rev Palaeobot Palynol 63:173–182CrossRefGoogle Scholar
  23. Cruise GM (1990b) Pollen stratigraphy of two Holocene peat sites in the Ligurian Apennines, northern Italy. Rev Palaeobot Palynol 63:299–313CrossRefGoogle Scholar
  24. Davies SM, Branch NP, Lowe JJ, Turney CSM (2002) Towards a European tephrochronological framework for Termination 1 and Early Holocene. Philos Trans R Soc Lond A 360:767–802CrossRefGoogle Scholar
  25. De Stefani C (1883) I laghi dell’Appennino Settentrionale. Bollettino del CAI 17:1–99Google Scholar
  26. Drescher-Schneider R, de Beaulieu JL, Magny M (2007) Vegetation history climate and human impact over the last 15,000 years at Lago dell’Accesa (Tuscany, Central Italy). Veget Hist Archaeobot 16:279–299CrossRefGoogle Scholar
  27. Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 4th edn. Ulmer, StuttgartGoogle Scholar
  28. Finsinger W, Tinner W (2005) Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. Holocene 15:293–297CrossRefGoogle Scholar
  29. Finsinger W, Tinner W, van der Knaap WO, Ammann B (2006) The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quat Sci Rev 25:612–631CrossRefGoogle Scholar
  30. Gobet E, Tinner W, Hubschmid P, Jansen I, Wehrli M, Ammann B, Wick L (2000) Influence of human impact and bedrock differences on the vegetational history of the Insubrian Southern Alps. Veget Hist Archaeobot 9:175–187CrossRefGoogle Scholar
  31. Gobet E, Tinner W, Bigler C, Hochuli PA, Ammann B (2005) Early-Holocene afforestation processes in the lower subalpine belt of the Central Swiss Alps as inferred from macrofossil and pollen records. Holocene 15:672–686CrossRefGoogle Scholar
  32. Grimm E (1992–2005) Tilia version 2.0.2 and TiliaGraph 1.12. Illinois State Museum, Research and Collection CentreGoogle Scholar
  33. Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  34. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:33–44CrossRefGoogle Scholar
  35. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediment: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  36. Hill MO (1979) DECORANA: a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, NYGoogle Scholar
  37. Hofstetter S, Tinner W, Valsecchi V, Carraro G, Conedera M (2006) Lateglacial and Holocene vegetation history in the Insubrian Southern Alps—new indications from a small-scale site. Veget Hist Archaeobot 15:87–98CrossRefGoogle Scholar
  38. Huntley B, Birks HJB (1983) An atlas of past and present maps for Europe: 0–13000 years ago. Cambridge University Press, CambridgeGoogle Scholar
  39. Huntley B, Watts WA, Allen JRM, Zolitschka B (1999) Palaeoclimate, chronology and vegetation history of the Weichselian Lateglacial: comparative analysis of data from three cores at Lago Grande di Monticchio, southern Italy. Quat Sci Rev 18:945–960CrossRefGoogle Scholar
  40. Jaurand E (1998) Les glaciers disparus de l’Apennin: Geomorphologie et paleoenvironnements glaciaires de l’Italie peninsulaire. Publication de la Sorbonne, ParisGoogle Scholar
  41. Jones RL, O’Brien CE, Cooper GR (2004) Palaeoenvironmental reconstruction of the Younger Dryas in Jersey, UK Channel Islands, based on plant and insect fossils. Proc Geol Assoc 115:43–53Google Scholar
  42. Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009) Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quat Sci Rev 28:2647–2662Google Scholar
  43. Keller F, Lischke H, Mathis T, Möhl A, Wick L, Ammann B, Kienast F (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record. Ecol Model 152:109–127CrossRefGoogle Scholar
  44. Latałowa M, van der Knaap WO (2006) Late Quaternary expansion of Norway spruce Picea abies (Karst.) in Europe according to pollen data. Quat Sci Rev 25:2780–2805Google Scholar
  45. Lowe JJ (1992) Lateglacial and early Holocene lake sediments from the northern Apennines, Italy—pollen stratigraphy and radiocarbon dating. Boreas 21:193–208CrossRefGoogle Scholar
  46. Lowe JJ (2001) Abrupt climatic changes in Europe during the last glacial-interglacial transition: the potential for testing hypotheses on the synchroneity of climatic events using tephrochronology. Global Planet Change 30:73–84CrossRefGoogle Scholar
  47. Lowe JJ, Watson C (1993) Lateglacial and early Holocene pollen stratigraphy of the Northern Apennines, Italy. Quat Sci Rev 12:727–738CrossRefGoogle Scholar
  48. Lowe JJ, Branch N, Watson C (1994a) The chronology of human disturbance of the vegetation of the Northern Apennines during the Holocene. In: Biagi P, Nandris J (eds) Highland zone exploitation in southern Europe, vol 20. Monografie di Natura Bresciana, Brescia, pp 169–187Google Scholar
  49. Lowe JJ, Davite C, Moreno D, Maggi R (1994b) Holocene pollen stratigraphy and human interference in the woodlands of the Northern Apennines, Italy. Holocene 4:153–164CrossRefGoogle Scholar
  50. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet A-V, Millet L, Bossuet G, Peyron O (2006) Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa. J Quat Sci 21:311–320CrossRefGoogle Scholar
  51. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet A-V, Miras Y, Millet L, Bossuet G, Peyron O, Brugiapaglia E, Leroux A (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26:1736–1758CrossRefGoogle Scholar
  52. Magri D (1999) Late Quaternary vegetation history at Lagaccione near Bolsena (Central Italy). Rev Palaeobot Palynol 106:171–208CrossRefGoogle Scholar
  53. Merkt J, Streif H (1970) Stechrohr-Bohrgeräte für limnische und marine Lockersedimente. Geol Jahrb 88:137–148Google Scholar
  54. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Oxford, BlackwellGoogle Scholar
  55. Mori Secci M (1996) Vicende oloceniche dell’Appennino Tosco-Emiliano ricostruite attraverso le analisi palinologiche. Webbia 51:83–120Google Scholar
  56. Odgaard BV (1999) Fossil pollen as a record of past biodiversity. J Biogeogr 26:7–17CrossRefGoogle Scholar
  57. Pini R (2002) A high-resolution Late-glacial—Holocene pollen diagram from Pian di Gembro (Central Alps, Northern Italy). Veget Hist Archaeobot 11:251–262CrossRefGoogle Scholar
  58. Pinna M (1977) Climatologia. Unione Tipografico-Editrice Torinese, TorinoGoogle Scholar
  59. Ponel P, Lowe JJ (1992) Coleopteran, pollen and radiocarbon evidence from the Prato Spilla “D” succession, N. Italy. CR Acad Sci Paris 315:1425–1431Google Scholar
  60. Punt W, Blackmore S (1976–2003) The northwest European Pollen Flora, vol 8. Elsevier, AmsterdamGoogle Scholar
  61. Ravazzi C (2002) Late Quaternary history of spruce in southern Europe. Rev Palaeobot Palynol 120:131–177CrossRefGoogle Scholar
  62. Ravazzi C, Donegana M, Vescovi E, Arpenti E, Caccianiga M, Kaltenrieder P, Londeix L, Marabini S, Mariani S, Pini R, Vai GB, Wick L (2006) A new Lateglacial site with Picea abies in the Northern Apennine foothills: a population failing the model of glacial refugia trees. Veget Hist Archaeobot 15:357–371CrossRefGoogle Scholar
  63. Reille M (1992–1998) Pollen et spores d’Europe et d’Afrique du Nord. Marseille. Laboratoire de botanique historique et palynologieGoogle Scholar
  64. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  65. Schneider R, Tobolski K (1985) Lago di Ganna—Late-glacial and Holocene environments of a Lake in the Southern Alps. Diss Bot 87:229–271Google Scholar
  66. Schwander J, Eicher U, Ammann B (2000) Oxygen isotopes of lake marl at Gerzensee and Leysin (Switzerland), covering the Younger Dryas and two minor oscillations, and their correlation to the GRIP ice core. Palaeogeogr Palaeoclimatol Palaeoecol 159:203–214CrossRefGoogle Scholar
  67. Scotti I, Vendramin GG, Matteotti S, Scarponi C, Sari-Gorla M, Binelli G (2000) Postglacial recolonization routes for Picea abies K. in Italy as suggested by the analysis of sequence-characterized amplified region (SCAR) markers. Mol Ecol 9:699–708CrossRefGoogle Scholar
  68. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621Google Scholar
  69. Terhürne-Berson R (2005) Changing distribution patterns of selected conifers in the Quaternary of Europe caused by climatic variations. Doctoral thesis, University of BonnGoogle Scholar
  70. Tinner W, Hu FS (2003) Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13:499–505CrossRefGoogle Scholar
  71. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947CrossRefGoogle Scholar
  72. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:551–554CrossRefGoogle Scholar
  73. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quat Sci Rev 25:526–549CrossRefGoogle Scholar
  74. Tinner W, Vescovi E (2007) Ecologia e oscillazioni del limite degli alberi nelle Alpi dal Pleniglaciale al presente. In: Frisia S, Filippi ML, Borsato A (ed) Cambiamenti climatici e ambientali in Trentino: dal passato prospettive per il futuro. Studi Trentini di Scienze Naturali, Acta Geolog 82:5–13Google Scholar
  75. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  76. Tollefsrud MM, Kissling R, Gugerli F, Johnsen O, Skroppa T, Cheddadi R, Van der Knaap WO, Latałowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150CrossRefGoogle Scholar
  77. Trautmann W (1953) Zur Unterscheidung fossiler Spaltöffnungen der mitteleuropäischen Coniferen. Flora 140:523–533Google Scholar
  78. Valsecchi V, Finsinger W, Tinner W, Ammann B (2008) Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). Holocene 18:603–614CrossRefGoogle Scholar
  79. Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43:68–78CrossRefGoogle Scholar
  80. Vescovi E (2007) Long-term population dynamics of major forest trees under strongly changing climatic conditions. Doctoral thesis, University of BernGoogle Scholar
  81. Vescovi E, Ravazzi C, Arpenti E, Finsinger W, Pini R, Valsecchi V, Wick L, Ammann B, Tinner W (2007) Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quat Sci Rev 26:1650–1669CrossRefGoogle Scholar
  82. von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science 284:1654–1657CrossRefGoogle Scholar
  83. von Grafenstein U, Eicher U, Erlenkeuser H, Ruch P, Schwander J, Ammann B (2000) Isotope signature of the Younger Dryas and two minor oscillations at Gerzensee (Switzerland): palaeoclimatic and palaeolimnologic interpretation based on bulk and biogenic carbonates. Palaeogeogr Palaeoclimatol Palaeoecol 159:215–229CrossRefGoogle Scholar
  84. Watson C (1996) The vegetation history of the northern Apennines, Italy: information from three new sequences and a review of regional vegetational change. J Biogeogr 23:805–841CrossRefGoogle Scholar
  85. Watson C, Branch N, Lowe JJ (1994) The vegetation history of the northern Apennines during the Holocene. In: Biagi P, Nandris J (eds) Highland zone exploitation in southern Europe, vol 20. Monografie di Natura Bresciana, Brescia, pp 153–168Google Scholar
  86. Wick L (1996) Late-glacial and early-Holocene palaeoenvironments in Brianza, N Italy. Il Quaternario 9:653–660Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elisa Vescovi
    • 1
    • 2
    Email author
  • Brigitta Ammann
    • 1
  • Cesare Ravazzi
    • 2
  • Willy Tinner
    • 1
  1. 1.Institute of Plant Sciences and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.C.N.R., Institute for the Environmental DynamicsDalmineItaly

Personalised recommendations