Vegetation History and Archaeobotany

, Volume 19, Issue 5–6, pp 391–408 | Cite as

Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity

Original Article


This paper presents results from a modern dataset of non-pollen palynomorphs and its application to a ca. 2,000 year peat record from the same area in the western Pyrenees (Basque Country, France). The modern dataset is composed of 35 surface samples (moss polsters) from a mountainous pasture-woodland landscape. Airborne fungal spores (ascospores and conidia), found dominant in the dataset, are linked to the degree of landscape openness and grazing pressure. The complete spectrum of 13 selected spore-types of dung-related Ascomycetes is positively linked with grazing pressure. However, different dung affinities between the spore-types have been identified. These are types clearly related to high grazing pressure and types with no or unclear dung indicative value. The modern dataset is used to aid interpretation of the local fossil pollen record as an independent ‘proxy’ to assess past pastoral dynamics. This study confirms the utility of modern non-pollen palynomorphs from terrestrial ecosystems in the reconstruction of historical local pastoral activities but also shows their limitation. It may be necessary to extend such study to wetland ecosystems and to investigate the spatial dimension of some fungal spores.


Non-pollen palynomorphs (NPPs) Modern and fossil NPPs Coprophilous Ascomycetes Grazing activities Pyrenees 



This study was funded by the PCR “Palaeoenvironment and human activities on the Basque mountain” (Ministry of Culture and SRA Aquitaine) and ATIP-CNRS “Palaeoenvironment and Pastoral Archaeology” programs headed by D. Galop. We are very grateful to Bas van Geel and André Aptroot for assistance with identifying NPPs and fungal spores, to Nicolas de Munnik for constructive comments and for having given access to his mycological library, to Mike Richardson for advice on coprophilous fungi ecology and to Sophie Chambers for having revised the English. The authors would like to thank Jean Nicolas Haas and two anonymous referees for their helpful comments and suggestions on the manuscript.


  1. Aptroot A (2006) Gasteromycetes, a source of fossil spores. Abstracts of the 2nd international workshop on non-pollen palynomorphs. Palyno-Bulletin 2:12Google Scholar
  2. Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Rev Palaeobot Palynol 141:225–230CrossRefGoogle Scholar
  3. Bell A (2005) An illustrated guide to the coprophilous Ascomycetes of Australia. Utrecht, The NetherlandsGoogle Scholar
  4. Blackford J, Innes J (2006) Linking current environments and processes to fungal spore assemblages: surface NPM data from woodland environments. Rev Palaeobot Palynol 141:179–187CrossRefGoogle Scholar
  5. Blackford J, Innes J, Hatton J, Caseldine C (2006) Mid-Holocene environmental change at Black Ridge Brook, Dartmoor, SW England: a new appraisal based on fungal spore analysis. Rev Palaeobot Palynol 141:189–201CrossRefGoogle Scholar
  6. Bos J, van Geel B, Groenewoudt B, Lauwerier R (2005) Early Holocene environmental change, the presence and disappearance of early Mesolithic habitation near Zutphen (The Netherlands). Veget Hist Archaeobot 15:27–43CrossRefGoogle Scholar
  7. Bourquin-Mignot C, Girardclos O (2001) Construction d’une longue chronologie de hêtres au Pays Basque. La forêt d’Iraty et le Petit Âge Glaciaire. Sud-Ouest Européen 11:59–71Google Scholar
  8. Boyd W (1986) The role of mosses in modern pollen analysis: the influence of moss morphology on pollen entrapment. Poll Spores 28:243–255Google Scholar
  9. Brocas D, Legaz A (2005) La montagne basque: sources et ressources. Les pâturages et les bois dans les Pyrénées occidentales (XIe-XIXe siècles). Congrès international RESOPYR, Presses Universitaires de Perpignan, PerpignanGoogle Scholar
  10. Burney D, Robinson G, Pigott Burney L (2003) Sporormiella and the late Holocene extinctions in Madagascar. PNAS 100:10800–10805Google Scholar
  11. Carozza L, Galop D, Marembert F, Monna F (2005) Quel statut pour les espaces de montagne durant l’âge du Bronze? Regards croisés sur les approches sociétés-environnement dans les Pyrénées occidentales. Doc Archéo Mérid 28:7–23Google Scholar
  12. Cooke R, Rayner A (1984) Ecology of saprotrophic fungi. New YorkGoogle Scholar
  13. Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quatern Res 28:290–294CrossRefGoogle Scholar
  14. Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclim Palaeoecol 237:40–50CrossRefGoogle Scholar
  15. Decisia (2002) Spad rel. 5.5: Système pour l’analyse des données. Levallois-Perret, FranceGoogle Scholar
  16. Ebersohn C, Eicker A (1992) Trichodelitschia microspora, a new coprophilous species from South Africa. S Afr J Bot 58:145–146Google Scholar
  17. Ellis M (1971) Dematiaceous hyphomycetes. UKGoogle Scholar
  18. Ellis M, Ellis J (1985) Microfungi on land plants. An identification handbook. Croom Helm, London and SydneyGoogle Scholar
  19. Ellis M, Ellis J (1998) Microfungi on miscellaneous substrates. An identification handbook. New enlarged edition, The Richmond Publisher, EnglandGoogle Scholar
  20. Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn, revised by Faegri K, Kaland PE and Krzywinski K. Wiley, ChichesterGoogle Scholar
  21. Galop D, Rendu C, Barcet H, Buttler A, Campmajo P, Cugny C, Gauthier E, Legaz A, Lopez-Saez J-A, Mazier F, Métailié J-P, Sordoillet D, Vannière B (2004) Paléoenvironement et archéologie pastorale. Propositions méthodologiques pour une approche intégrée des modalités de l’anthropisation en haute montagne pyrénéenne du Néolithique à l’actuel. Besançon  Google Scholar
  22. Goyhenetche M (2001) Histoire générale du Pays Basque (Tome III) Evolution économique et sociale du XVIe au XVIIIe siècle. Elkarlanean, DonostiaGoogle Scholar
  23. Graf M-T, Chmura G (2006) Development of modern analogues for natural, mowed and grazed grasslands using pollen assemblages and coprophilous fungi. Rev Palaeobot Palynol 141:139–149CrossRefGoogle Scholar
  24. Hausmann S, Lotter A, van Leeuwen J, Ohlendorf C, Lemcke G, Grönlund E, Sturm M (2002) Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–289CrossRefGoogle Scholar
  25. Innes J, Blackford J (2003) The ecology of Late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194CrossRefGoogle Scholar
  26. Jacobson G, Bradshaw R (1981) The selection of sites for paleovegetational studies. Quatern Res 16:80–96CrossRefGoogle Scholar
  27. Kiffer E, Morelet M (1997) Les Deutéromycètes. Classification et clés d’identification générique, INRA éditions, ParisGoogle Scholar
  28. Krug JC, Benny GL, Keller HW (2004) Coprophilous fungi. In: Mueller GM (ed) Biodiversity of fungi. Academic Press, Burlington, pp 467–499CrossRefGoogle Scholar
  29. Legaz A (2005) Systèmes pastoraux et sociétés en Basse Navarre du XIII au XVIII siècles: construction et transitions. PhD thesis, Université Toulouse-Le Mirail, ToulouseGoogle Scholar
  30. Lundqvist N (1972) Nordic Sordariaceae s. lat. Symb Bot Upsal 20:1–374Google Scholar
  31. Marembert F (2000) La grotte de Mikelauen-Zilo. In: Galop D (ed) Paléoenvironnement et dynamiques de l’anthropisation en Montagne Basque. Internal report PCR, SRA Aquitaine, CNRS, Toulouse, pp 71–87Google Scholar
  32. Mazier F, Galop D, Brun C, Buttler A (2006) Modern pollen assemblages from grazed vegetation in the western Pyrenees, France: a numerical tool for more precise reconstruction of past cultural landscapes. Holocene 16:91–103CrossRefGoogle Scholar
  33. Mazier F, Galop D, Gaillard M-J, Rendu C, Cugny C, Legaz A, Peyron O, Buttler A (2009) Multidisciplinary approach to reconstruct pastoral activities. An example from the Pyrenean Mountains (Pays Basque). Holocene 19:171–178Google Scholar
  34. Mighall T, Martinez Cortizas A, Biester H, Turner SE (2006) Proxy climate and vegetation changes during the last five millennia in NW Iberia: pollen and non-pollen palynomorph data from two ombrotrophic peat bogs in the North Western Iberian Peninsula. Rev Palaeobot Palynol 141:203–223CrossRefGoogle Scholar
  35. Moore P, Webb J, Collinson M (1991) Pollen analysis, 2nd edn, OxfordGoogle Scholar
  36. Mulder C, Beure A, Joosten J (2003) Fungal functional diversity inferred along Ellenberg’s abiotic gradients: palynological evidence from different soil microbiota. Grana 42:55–64Google Scholar
  37. Mulder C, Janssen C (1999) Occurence of pollen and spore in relation to present-day vegetation in a Dutch heathland area. J Veg Sci 10:87–100CrossRefGoogle Scholar
  38. Nyberg A, Persson I-L (2002) Habitat difference of coprophilous fungi on moose dung. Mycol Res 106:1360–1366Google Scholar
  39. Pals J, van Geel B, Delfos A (1980) Palaeoecological studies in the Klokkeweel bog near Hoogkarspel (prov of Noor Holland). Rev Palaeobot Palynol 30:371–418CrossRefGoogle Scholar
  40. Prager A, Barthelmes A, Theuerkauf M, Joosten H (2006) Non-pollen palynomorphs from modern Alder carrs and their potential for interpreting microfossil data from peat. Rev Palaeobot Palynol 141:7–31CrossRefGoogle Scholar
  41. Ralska-Jasiewisczowa M, van Geel B (1992) Early Human disturbance of natural environment recorded in annually laminated sediments of Lake Gosciaz, central Poland. Veget Hist Archaeobot 1:33–42Google Scholar
  42. Reille M (1992–1998) Pollen et spores d’Europe et d’Afrique du Nord. MarseilleGoogle Scholar
  43. Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Bertrand C, Blackwell P, Buck C, Burr G, Cutler K, Damon P, Edwards R, Fairbanks R, Friedrich M, Guilderson T, Hogg A, Hughen K, Kromer B, McCormac G, Manning S, Ramsey C, Reimer R, Remmele S, Southon J, Stuiver M, Talamo S, Taylor F, van der Plicht J, Weyhenmeyer C (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal Kyr B.P. Radiocarbon 46:1029–1058Google Scholar
  44. Richardson J, Walting R (1982) Keys to fungi on dung, revised edn. The British Mycological Society  Google Scholar
  45. Richardson M (1972) Coprophilous Ascomycetes on different dung types. Trans Br Mycol Soc 58:37–48CrossRefGoogle Scholar
  46. Stuiver M, Reimer P (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  47. Sugita S (1993) A model of pollen source area for an entire lake surface. Quatern Res 39:239–244CrossRefGoogle Scholar
  48. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  49. van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120CrossRefGoogle Scholar
  50. van Geel B (2001) Non-pollen palynomorphs. In: Smol J, Birks HJB, Last W (eds) Tracking environmental change using lake sediments. Vol 3: Terrestrial, algal, and silicaceous indicators. Kluwer, Dordrecht, pp 99–109Google Scholar
  51. van Geel B, Andersen ST (1988) Fossil ascospores of the parasitic fungus Ustulina deusta in Eemian deposits in Danmark. Rev Palaeobot Palynol 56:89–93CrossRefGoogle Scholar
  52. van Geel B, Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedw 82:313–329CrossRefGoogle Scholar
  53. van Geel B, Bos J, Pals J (1983) Archaeological and palaeoecological aspects of a medieval house terp in a reclaimed raised bog area in north Holland. Ber Rijksd Oudheidk Bodemonderz 33:419–444Google Scholar
  54. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  55. van Geel B, Zazula G, Schweger C (2007) Spores of coprophilous fungi from under the Dawson tephra (25,300 14C years bp), Yukon Territory, northwestern Canada. Palaeogeogr Palaeoclim Palaeoecol 252:481–485CrossRefGoogle Scholar
  56. Yeloff D, Charman D, van Geel B, Mauquoy D (2007) Reconstruction of hydrology, vegetation and past climate change in bogs using fungal microfossils. Rev Palaeobot Palynol 146:102–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratoire de Géographie de l’Environnement (GEODE), UMR 5602 CNRSUniversité Toulouse-Le MirailToulouse CedexFrance
  2. 2.GeoBiosphere Science CentreLund UniversityLundSweden

Personalised recommendations