Vegetation History and Archaeobotany

, Volume 17, Issue 5, pp 461–478 | Cite as

Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review

  • Anna BroströmEmail author
  • Anne Birgitte Nielsen
  • Marie-José Gaillard
  • Kari Hjelle
  • Florence Mazier
  • Heather Binney
  • Jane Bunting
  • Ralph Fyfe
  • Viveca Meltsov
  • Anneli Poska
  • Satu Räsänen
  • Welmoed Soepboer
  • Henrik von Stedingk
  • Henna Suutari
  • Shinya Sugita


Information on the spatial distribution of past vegetation on local, regional and global scales is increasingly used within climate modelling, nature conservancy and archaeology. It is possible to obtain such information from fossil pollen records in lakes and bogs using the landscape reconstruction algorithm (LRA) and its two models, REVEALS and LOVE. These models assume that reliable pollen productivity estimates (PPEs) are available for the plant taxa involved in the quantitative reconstructions of past vegetation, and that PPEs are constant through time. This paper presents and discusses the PPEs for 15 tree and 18 herb taxa obtained in nine study areas of Europe. Observed differences in PPEs between regions may be explained by methodological issues and environmental variables, of which climate and related factors such as reproduction strategies and growth forms appear to be the most important. An evaluation of the PPEs at hand so far suggests that they can be used in modelling applications and quantitative reconstructions of past vegetation, provided that consideration of past environmental variability within the region is used to inform selection of PPEs, and bearing in mind that PPEs might have changed through time as a response to climate change. Application of a range of possible PPEs will allow a better evaluation of the results.


Pollen productivity estimates (PPE) Landscape reconstruction algorithm (LRA) Tree taxa Herb taxa Moss polsters Lake sediments 



This paper is a contribution to the POLLANDCAL (POLlen-LANDscape CALibration) network ( sponsored by Nordforsk. We are very thankful to all POLLANDCAL members for useful and inspiring discussions during numerous network workshops (2001–2007). The manuscript was improved thanks to the helpful comments and suggestions from two anonymous referees. We also wish to thank Beate Helle for the layout of Fig. 2.


  1. Andersen ST (1970) The relative pollen productivity and representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelse Række II 96:1–99Google Scholar
  2. Anderson NJ, Bugmann H, Dearing JA, Gaillard MJ (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evolut 21:696–704CrossRefGoogle Scholar
  3. Autio J, Hicks S (2004) Annual variations in pollen deposition and meteorological conditions on the fell Aakenustunturi in northern Finland: potential for using fossil pollen as a climate proxy. Grana 43:31–47CrossRefGoogle Scholar
  4. Bradshaw R (2007) Detecting human impact in the pollen record using data-model comparison. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0116-8
  5. Berglund BE, Gaillard MJ, Björkman L, Persson T (2007) Long-term changes in floristic diversity in southern Sweden—palynological richness, vegetation dynamics and land-use. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0094-x
  6. Broström A (2002) Estimating source area of pollen and polen productivity in cultural landscapes of southern Sweden—developing a palynological tool for quantifying past plant cover. Doctoral thesis, Lund University, LundGoogle Scholar
  7. Broström A, Gaillard MJ, Ihse M, Odgaard B (1998) Pollen–landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden—a first step towards quantification of vegetation openness in the past. Veget Hist Archaeobot 7:189–201CrossRefGoogle Scholar
  8. Broström A, Sugita S, Gaillard MJ (2004) Pollen productivity estimates for reconstruction of past vegetation cover in the cultural landscape of southern Sweden. Holocene 14:371–384CrossRefGoogle Scholar
  9. Broström A, Sugita S, Gaillard MJ, Pilesjö P (2005) Estimating spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:252–262CrossRefGoogle Scholar
  10. Bunting MJ, Hjelle KL (2008) Effect of vegetation data collection strategies on estimates of relevant source area of pollen (RSAP) and relative pollen productivity (RPP) for non-arboreal taxa (submitted)Google Scholar
  11. Bunting MJ, Gaillard MJ, Sugita S, Middleton R, Broström A (2004) Vegetation structure and pollen source area. Holocene 14:651–660CrossRefGoogle Scholar
  12. Bunting MJ, Armitage R, Binney HA, Waller M (2005) Estimates of “relative pollen productivity” and “relevant source area of pollen” for major tree taxa in two Norfolk (UK) woodlands. Holocene 15:459–465CrossRefGoogle Scholar
  13. Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83:591–602CrossRefGoogle Scholar
  14. Caseldine C, Fyfe R (2006) A modelling approach to locating and characterising elm decline/landnam landscapes. Quat Sci Rev 25:632–644CrossRefGoogle Scholar
  15. Caseldine C, Fyfe R, Langdon C, Thompson G (2007a) Simulating the nature of vegetation communities at the opening of the Neolithic on Achill Island, Co. Mayo, Ireland—the potential role of models of pollen dispersal and deposition. Rev Palaeobot Palynol 144:135–144CrossRefGoogle Scholar
  16. Caseldine C, Fyfe R, Hjelle K (2007b) Pollen modelling, palaeoecology and archaeology—virtualisation and/or visualisation of the past? Veget Hist Archaeobot. doi: 10.1007/s00334-007-0093-y
  17. Dahlström A (2006) Grazing dynamics at different spatial and temporal scales: examples from the Swedish historical record A.D. 1620–1850. Veget Hist Archaeobot. doi: 10.1007/s00334-006-0087-1
  18. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912Google Scholar
  19. Duffin KI, Bunting MJ (2007) Relative pollen productivity and fall speed estimates for southern African savanna taxa. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0101-2
  20. Eisenhut G (1961) Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume (English tr. by Jackson ST, Jaumann P 1989). Parey, HamburgGoogle Scholar
  21. Fyfe R (2006) GIS and the application of a model of pollen deposition and dispersal: a new approach to testing landscape hypotheses using the POLLANDCAL models. J Arch Sci 33:483–493CrossRefGoogle Scholar
  22. Gaillard MJ (2000) Development of the cultural landscape. In: Sandgren P (ed) Environmental changes in Fennoscandia during the Late Quaternary. LUNDQUA Report 37, Lund, pp 69–82Google Scholar
  23. Gaillard MJ (2007) Pollen methods and studies—archaeological applications. In: Elias SA (ed) Encyclopedia of quaternary science, vol 3. Elsevier, Amsterdam, pp 2575–2595Google Scholar
  24. Gaillard MJ, Birks HJB, Ihse M, Runborg S (1998) Pollen/landscape calibration based on modern pollen assemblages from surface-sediment samples and landscape mapping—a pilot study in south Sweden. In: Gaillard MJ, Berglund BE, Frenzel B, Huckriede U (eds) Quantification of land surface cleared of forest during the Holocene. (Paläoklimaforschung/Palaeoclimate Research 27) Fischer, Stuttgart, pp 31–52Google Scholar
  25. Gaillard M-J, Sugita S, Bunting MJ, Middleton D, Hicks S, Broström A., Caseldine C, Giesecke T, Hjelle K, Langdon C, Nielsen A-B, Poska A, von Stedingk H, Veski S, and POLLANDCAL members* (2008) The use of simulation models in reconstructing past landscapes from fossil pollen data—research strategy and results from the POLLANDCAL network. Veget Hist ArchaeobotGoogle Scholar
  26. Gallandat JD, Gillet F, Havlicek E, Perrenoud A (1995) Typologie et systématique phyto-écologique des pâturages boisés du Jura suisse. Institut de botanique, Université de NeuchâtelGoogle Scholar
  27. Gobat JM, Duckert O, Gallandat JD (1989) Quelques relations “microtopographie-sols-végétation” dans les pelouses pseudo-alpines du Jura suisse: exemples d’un système naturel et d’un système anthropisé. Bull Soc Neuchâteloise Sci Nat 112:5–17Google Scholar
  28. Grant MJ, Edwards ME (2007) Conserving idealized landscapes: past history, public perception and future management in the New Forest (UK). Veget Hist Archaeobot. doi: 10.1007/s00334-007-0100-3
  29. Gregory PH (1973) The microbiology of the atmosphere. Leonard Hill, AylesburyGoogle Scholar
  30. Groenman-van Waateringe W (1993) The effects of grazing on the pollen production of grasses. Veget Hist Archaeobot 2:157–162CrossRefGoogle Scholar
  31. Hellman S, Gaillard MJ, Broström A, Sugita S (2008a) The REVEALS model, a new tool to estimate past regional plant abundance from data in large lakes: validation in southern Sweden. J Quat Sci 23:21–42CrossRefGoogle Scholar
  32. Hellman SEV, Gaillard M-J, Broström A, Sugita S (2008b) Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: a case study in southern Sweden using the REVEALS model. Veget Hist Archaeobot. doi: 10.1007/s00334-008-0149-7
  33. Hicks S (1998) Fields, boreal forest and forest clearings as recorded by modern pollen deposition. In: Gaillard MJ, Berglund BE, Frenzel B, Huckriede U (eds) Quantification of land surface cleared forest during the Holocene (Paläoklimaforschung/Palaeoclimate Research 27) Fischer, Stuttgart, pp 53–66Google Scholar
  34. Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29CrossRefGoogle Scholar
  35. Hjelle KL (1998) Herb pollen representation in surface moss samples from mown meadows and pastures in western Norway. Veget Hist Archaeobot 7:79–96CrossRefGoogle Scholar
  36. Mazier F, Brostöm A, Gaillard MJ, Sugita S, Vittoz P, Buttler A (2008) Pollen productivity estimates and Relevant Source Area for major taxa in a pasture woodland (Jura mountains, Switzerland). Veget Hist Archaeobot. doi: 10.1007/s00334-008-0143-0
  37. Moen A (1999) National atlas of Norway: vegetation. Norwegian Mapping Authority, HønefossGoogle Scholar
  38. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, LondonGoogle Scholar
  39. Nielsen AB (2003) Pollen-based quantitative estimation of land cover—relationships between pollen sedimentation in lakes and land cover as seen on historical maps in Denmark A.D. 1800. Doctoral thesis, University of CopenhagenGoogle Scholar
  40. Nielsen AB (2004) Modelling pollen sedimentation in Danish lakes at c A.D. 1800: an attempt to validate the POLLSCAPE model. J Biogeogr 31:1693–1709CrossRefGoogle Scholar
  41. Nielsen AB, Odgaard BV (2004) The use of historical analogues for interpreting fossil pollen records. Veget Hist Archaeobot 13:33–43CrossRefGoogle Scholar
  42. Olofsson J, Hickler T (2007) Effects of human land-use on the global carbon cycle during the last 6000 years. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0126-6
  43. Parshall T, Calcote R (2001) Effect of pollen from regional vegetation on stand-scale forest reconstruction. Holocene 11:81–87CrossRefGoogle Scholar
  44. Parsons RW, Prentice IC (1981) Statistical approaches to R-values and pollen–vegetation relationship. Rev Palaeobot Palynol 32:127–152CrossRefGoogle Scholar
  45. Poska A, Sepp E, Veski S, Koppel K (2007) Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rõuge, South Estonia. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0124-8
  46. Prentice IC (1985) Pollen representation, source area, and basin size: Toward a unified theory of pollen analysis. Quatern Res 23:76–86CrossRefGoogle Scholar
  47. Prentice IC, Parsons RW (1983) Maximum likelihood linear calibration of pollen spectra in terms of forest composition. Biometrics 39:1051–1057CrossRefGoogle Scholar
  48. Prentice IC, Webb T III (1986) Pollen percentages, tree abundances and the Fagerlind effect. J Quat Sci 1:35–43Google Scholar
  49. Punt W, Blackmore S, Clarke GCS, Hoen PP (1976–1995) The Northwest European pollen flora. Elsevier, AmsterdamGoogle Scholar
  50. Räsänen S, Hicks S, Odgaard BV (2004) Pollen deposition in mosses and a modified ‘Tauber trap’ from Hailuoto, Finland: what exactly does the moss record? Rev Palaeobot Palynol 129:103–116CrossRefGoogle Scholar
  51. Räsänen S, Suutari H, Nielsen AB (2007) A step further towards quantitative reconstruction of past vegetation in Fennoscandian boreal forests: Pollen productivity estimates for six dominant taxa. Rev Palaeobot Palynol 146:208–220CrossRefGoogle Scholar
  52. Soepboer W, Sugita S, Lotter A, Van Leuwen JFN, Van der Knaap WO (2007a) Pollen productivity estimates for quantitative reconstruction of vegetation cover on the Swiss Plateau. Holocene 17:1–13CrossRefGoogle Scholar
  53. Soepboer W, Vervoort JM, Sugita S, Lotter AF (2007b) Evaluating Swiss pollen productivity estimates using a simulation approach. Veget Hist Archaeobot. doi: 10.1007/s00334-007-0128-4
  54. Sugita S (1993) A model of pollen source area for an entire lake surface. Quat Res 39:239–244CrossRefGoogle Scholar
  55. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897CrossRefGoogle Scholar
  56. Sugita S (1998) Modelling pollen representation of vegetation. In: Gaillard MJ, Berglund BE, Frenzel B, Huckriede U (eds) Quantification of land surface cleared forest during the Holocene. (Paläoklimaforschung/ Palaeoclimate Research 27) Fischer, Stuttgart, pp 1–16Google Scholar
  57. Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation. Holocene 17:229–241CrossRefGoogle Scholar
  58. Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17:243–257CrossRefGoogle Scholar
  59. Sugita S, Andersen ST, Gaillard MJ, Mateus J, Odgaard B, Prentice IC, Vorren KD (1998) Modelling and data analysis for the quantification of forest clearence signals in pollen records. In: Gaillard MJ, Berglund BE, Frenzel B, Huckriede U (eds) Quantification of land surface cleared forest during the Holocene. (Paläoklimaforschung/Palaeoclimate Research 27) Fischer, Stuttgart, pp 125–131Google Scholar
  60. Sugita S, Gaillard MJ, Broström A (1999) Landscape openness and pollen records: A simulation approach. Holocene 9:409–421CrossRefGoogle Scholar
  61. Sugita S, Gaillard MJ, Hellman S, Broström A (2008) Model-based reconstruction of vegetation and landscape using fossil pollen. In: Proceedings of 35th CAA (Computer Applications and Quantitative Methods in Archaeology) Conference, Berlin, April 2007Google Scholar
  62. Sutton OG (1953) Micrometeorology. McGraw-Hill, New YorkGoogle Scholar
  63. Wilmshurst J, McGlone M (2005) Origin of pollen and spores in surface lake sediments: comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. Rev Palaeobot Palynol 136:1–15CrossRefGoogle Scholar
  64. von Stedingk H, Fyfe R, Allard A (2008) Pollen productivity estimates for the reconstruction of past vegetation at the forest-tundra ecotone. Holocene 18:323–332CrossRefGoogle Scholar
  65. Vuorela I (1973) Relative pollen rain around cultivated fields. Acta Bot Fennica 102:1–27Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anna Broström
    • 1
    Email author
  • Anne Birgitte Nielsen
    • 2
  • Marie-José Gaillard
    • 3
  • Kari Hjelle
    • 4
  • Florence Mazier
    • 3
    • 5
  • Heather Binney
    • 6
  • Jane Bunting
    • 7
  • Ralph Fyfe
    • 8
  • Viveca Meltsov
    • 9
  • Anneli Poska
    • 9
  • Satu Räsänen
    • 10
  • Welmoed Soepboer
    • 11
  • Henrik von Stedingk
    • 12
  • Henna Suutari
    • 10
  • Shinya Sugita
    • 13
  1. 1.Geobiosphere Science CentreLund UniversityLundSweden
  2. 2.Department of Quaternary GeologyGeological Survey of Greenland and DenmarkCopenhagenDenmark
  3. 3.School of Pure and Applied Natural SciencesUniversity of KalmarKalmarSweden
  4. 4.Natural History CollectionsUniversity of BergenBergenNorway
  5. 5.Faculty of ScienceUMR 6565BesançonFrance
  6. 6.Palaeoecology LaboratoryUniversity of SouthamptonSouthamptonUK
  7. 7.Department of GeographyUniversity of HullKingston-Upon-HullUK
  8. 8.School of GeographyUniversity of PlymouthPlymouthUK
  9. 9.Institute of Geology at Tallinn University of TechnologyTallinnEstonia
  10. 10.Department of GeographyUniversity of OuluOuluFinland
  11. 11.Department of Palaeoecology, Institute of Environmental Biology, Laboratory of Palaeobotany and PalynologyUtrecht UniversityUtrechtThe Netherlands
  12. 12.Department of Forest Ecology and ManagementSwedish University of Agricultural SciencesUmeåSweden
  13. 13.University of Minnesota, Ecology, Evolution, and BehaviorSt PaulUSA

Personalised recommendations