Vegetation History and Archaeobotany

, Volume 16, Issue 2–3, pp 183–195

Environmental change, bog history and human impact around 2900 b.c. in NW Germany–preliminary results from a dendroecological study of a sub-fossil pine woodland at Campemoor, Dümmer Basin

  • Hanns Hubert Leuschner
  • Andreas Bauerochse
  • Alf Metzler
Original Article

Abstract

This paper presents a detailed dendroecological analysis of remains from a sub-fossil pine forest at the Campemoor in the Dümmer basin, NW Germany and of pine timbers from a contemporaneous Neolithic trackway Pr 32 through the Campemoor. Changes in growth pattern and population dynamics of the pines are discussed in context with the time of construction of the trackway. The findings date to the period around 3000 b.c. Together with palaeobotanical investigations (pollen and macro remains) and the archaeological results (trackway) the dendroecological analysis mirrors environmental changes and the response of people to these changes. In order to test this local development for a possible climate background, ring-width variability and population dynamics of the Campemoor pines and of the overall data set of Lower Saxonian sub-fossil oaks from bogs have been compared. The results of these investigations clearly indicate a common widespread turn from drier to more humid climate conditions as trigger for the transition period, initiating the raised bog growth. It happened in two phases at the beginning of the 3rd millennium, interrupted by a drier period between 2825 and 2770 b.c. Afterwards large areas of former settlement sites within today's Campemoor became inaccessible and were covered by raised bog.

Keywords

Palaeoecology Dendrochronology Archaeology Climate change Neolithic Wooden trackway 

References

  1. Aniol RW (1983) Tree-ring analysis using CATRAS. Dendrochronologia 1:45–53Google Scholar
  2. Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree-Ring Bulletin 33:7–14Google Scholar
  3. Bauerochse A (2003) Environmental change and its influence on trackway construction and settlement in the south-western Dümmer area. In: Bauerochse A, Hassmann H (eds) Peatlands, archaeological sites–archives of nature–nature conservation–wise use. Proceedings of the Peatland Conference 2002 in Hannover, Germany. Leidorf, Rahden/Westfalen, pp 68–78Google Scholar
  4. Bauerochse A, Metzler A (2001) Landschaftswandel und Moorwegebau im Neolithikum in der südwestlichen Dümmer-Region. Telma 31:105–133Google Scholar
  5. Bauerochse A, Metzler A (2006) Kulturlandschaft Dümmer Gestniederung. In: Bauerochse A, Haßmann H, Ickerodt U (eds) Kulturlandschaft administrativ - digital - touristisch. = Initiativen zum Umweltschutz. Erich-Schmidt-VerlagGoogle Scholar
  6. Bauerochse A, Leuschner B, Leuschner HH (2006) Moorhölzer und Archäologie–umweltgeschichtliche und siedlungsarchäologische Befunde. Berichte zur Denkmalpflege in Niedersachsen 26:40–45Google Scholar
  7. Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23:225–245Google Scholar
  8. Behre K-E, Brande A, Küster H, Rösch M (1996) Germany. In: Berglund BE, Birks HJB, Ralska-Jesiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15000 years. Wiley, Chichester, pp 507–551Google Scholar
  9. Blaauw M, van Geel B, van der Plicht J (2004) Solar forcing of climatic change during the mid-Holocene: indications from raised bogs in The Netherlands Maarten. The Holocene 14:35–44CrossRefGoogle Scholar
  10. Boswijk G, Whitehouse NJ (2002) Pinus and Prostomis: a dendrochronological and palaeoentomological study of a mid-Holocene woodland in eastern England. The Holocene 12:585–596CrossRefGoogle Scholar
  11. Briffa KR, Jones PD, Schweingruber FH, Karlén W, Shiyatov SG (1996) Tree-ring variables as proxy-indicators: Problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J (eds) Climatic Variations and Forcing Mechanisms of the Last 2000 Years. NATO ASI Series I 41:9–41Google Scholar
  12. Cook ER, Briffa KR, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA (eds) Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer, Boston, MA, pp 104–123Google Scholar
  13. Deichmüller J (1975) Die jungsteinzeitliche Moorsiedlung Hüde I am Dümmer. Telma 5:43–50Google Scholar
  14. Deichmüller J. (1968) Die neolithische Moorsiedlung Hüde I am Dümmer, Kr. Grafschaft Diepholz. Abschlußbericht. Nachrichten aus Niedersachsens Urgeschichte 37:106–110Google Scholar
  15. Delorme A, Leuschner HH, Höfle C, Tüxen J (1981) Über die Anwendung der Dendrochronologie in der Moorforschung am Beispiel subfossiler Eichenstämme aus niedersächsischen Mooren. Eiszeitalter und Gegenwart 31:135–158Google Scholar
  16. Drafehn A (2006) Geomagnetische Prospektion und archäologische Ausgrabung am Fundplatz Hunte 2, Ldkr. Vechta. Berichte zur Denkmalpflege in Niedersachsen 26:48–50Google Scholar
  17. Gerken K (2003) Improving the picture of prehistoric settlement distribution by systematic prospection. In: Bauerochse A, Hassmann H (eds) Peatlands, archaeological sites–archives of nature–nature conservation–wise use, Proceedings of the Peatland Conference 2002 in Hannover, Germany. Leidorf, Rahden/Westfalen, pp 89–94Google Scholar
  18. Hayen H (1960) Erhaltungsformen der in Mooren gefundenen Baumreste. Oldb Jb 59:21–49Google Scholar
  19. Hughes PDM (2003) Review of the routes to ombrotrophy in raised bogs in Britain and Ireland. In: Bauerochse A, Hassmann H (eds) Peatlands, archaeological sites–archives of nature–nature conservation–wise use, Proceedings of the Peatland Conference 2002 in Hannover, Germany. Leidorf, Rahden/Westfalen, pp 188–195Google Scholar
  20. Hughes PDM, Barber KE (2004) Contrasting pathways to ombrotrophy in three raised bogs from Ireland and Cumbria, England. The Holocene 14:65–77CrossRefGoogle Scholar
  21. Iseli M, Schweingruber FH (1989) Sichtbarmachen von Jahrringen für dendrochronologische Untersuchungen. Dendrochronologia 7:145–157Google Scholar
  22. Kokkonen P (1923) Beobachtungen über das Wurzelsystem der Kiefer in Moorböden. Acta Forestalia Fennica 25:1–20Google Scholar
  23. Kossian R, Lönne P (2003) Dorfleben vor 5000 Jahren. Archäologie in Deutschland 3:8–13Google Scholar
  24. Kossian R (2003) The Neolithic settlement site “Hunte 1” near lake Dümmer, in Diepholz District (Lower Saxony, Germany)–a survey. In: Bauerochse A, Hassmann H (eds) Peatlands, archaeological sites–archives of nature–nature conservation–wise use, Proceedings of the Peatland Conference 2002 in Hannover, Germany. Leidorf, Rahden/Westfalen, pp 78–88Google Scholar
  25. Köstler JN, Brückner E, Bibelriether H (1968) Die Wurzeln der Waldbäume. Parey, Hamburg BerlinGoogle Scholar
  26. Lageard JGA, Chambers FM, Thomas PA (1999) Climatic significance of the marginalization of Scots pine (Pinus sylvestris L.) c. 2500 b.c. at White Moss, south Cheshire, UK. The Holocene 9:321–331CrossRefGoogle Scholar
  27. Leuschner HH (1992) Subfossil trees. In: Bartholin TS, Berglund BE, Eckstein D, Schweingruber FH, Eggertsson O (eds) Tree Rings and Environment: Proceedings of the International Symposium, Ystad, South Sweden. Lundqua Report 34:193–197Google Scholar
  28. Leuschner HH (1994) Jahrringanalysen. In: Herrmann B (ed) Archäometrie. Naturwissenschaftliche Analyse von Sachüberresten. Springer, Berlin Heidelberg, NY, pp 121–136Google Scholar
  29. Leuschner HH, Delorme A, Hoefle HC (1987) Dendrochronological study of oak trunks found in bogs of northwest Germany. In: Jacoby GC Jr, Hornbeck JW (eds) (compilers) Proceedings of the International Symposium on Ecological Aspects of Tree-Ring Analysis, Tarrytown, New York. U.S. Department of Energy, Publication CONF-8608144, pp 298–318Google Scholar
  30. Leuschner HH, Sass-Klaassen U, Jansma E, Baillie MGL, Spurk M (2002) Subfossil European bog oaks: population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene 12:695–706CrossRefGoogle Scholar
  31. Leuschner HH, Schweingruber FH (1996) Dendroökologische Klassifizierung und Auswertung häufig auftretender intraannueller holzanatomischer Merkmale bei Eichen und Kiefern. Dendrochronologia 14:273–285Google Scholar
  32. Leuschner HH, Spurk M, Baillie MGL, Jansma, E (2000) Stand Dynamics of Prehistoric Oak Forests Derived from Dendrochronologically Dated Subfossil Trunks from Bogs and Riverine Sediments in Europe. Geolines 11:118–121Google Scholar
  33. Macklin MG, Johnstone E, Lewin J (2005) Pervasive and long-term forcing of Holocene river instability and flooding in Great Britain by centennial-scale climate change. The Holocene 15:937–943CrossRefGoogle Scholar
  34. Mäkilä M (2001) Climate in relation to carbon accumulation on Kilpisuo, a raised bog in southern Finland. In: Vasiliev SV, Titlyanova AA, Velicho AA (eds) West Siberian Peatlands and Carbon Cycle: Past and Present, Proceedings of International Field Symposium Noyabrsk, Novosibirsk, pp 38–40Google Scholar
  35. Metzler A (2003) Early Neolithic peatland sites around lake Dümmer. In: Bauerochse A, Hassmann H (eds) Peatlands, archaeological sites–archives of nature–nature conservation–wise use, Proceedings of the Peatland Conference 2002 in Hannover, Germany. Leisdorf, Rahden/Westfalen, pp 62–67Google Scholar
  36. Reinerth H (1939): Ein Dorf der Großsteingrableute–Die Ausgrabungen des Reichsamtes für Vorgeschichte am Dümmer. Germanenerbe 4:226–242Google Scholar
  37. Riemer T (1994) Über die Varianz von Jahrringbreiten. Statistische Methoden für die Auswertung der jährlichen Dickenzuwächse von Bäumen unter sich ändernden Lebensbedingungen. Berichte des Forschungszentrums Waldökosysteme, Reihe A 121:1–375Google Scholar
  38. Sass-Klaassen U, Hanraets E (2006) Woodland of the past–The excavation of wetland woods at Zwolle-Stadshagen (the Netherlands): Growth pattern and population dynamics of oak and ash. Netherlands J Geosci 85:61–71Google Scholar
  39. Schmid J, Bogenrieder A, Schweingruber FH (1995) Verjüngung und Wachstum von Moor-Kiefern (Pinus rotundata Link) und Fichten (Picea abies (L.) Karst.) in Mooren des südöstlichen Schwarzwaldes (Süddeutschland). Mitteilungen der Eidgenössichen Forschunganstalt für Wald, Schnee und Landschaft 70:174–223Google Scholar
  40. Spurk M, Leuschner HH, Baillie MGL, Briffa KR, Friedrich M (2002) Depositional frequency of German subfossil oaks: climatically and non-climatically induced fluctuations in the Holocene. The Holocene 12:707–716CrossRefGoogle Scholar
  41. Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. Schweizerbart, StuttgartGoogle Scholar
  42. Timmermann T (2003) Hydrologische Dynamik von Kesselmooren und ihre Bedeutung für die Gehölzentwicklung. Telma 33:85–107Google Scholar

Copyright information

© Springer Verlag 2006

Authors and Affiliations

  • Hanns Hubert Leuschner
    • 1
  • Andreas Bauerochse
    • 2
  • Alf Metzler
    • 2
  1. 1.Laboratory for DendroecologyDepartment of Palynology and Climate Dynamics, Albrecht-von-Haller Institute of Plant Science, University of GöttingenGöttingenGermany
  2. 2.Lower Saxony State Service for Cultural HeritageHannoverGermany

Personalised recommendations