The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence of forest fires? Palaeobotanical records and forest simulations

Original Article

Abstract

Pollen records suggest that Abies alba played a dominating role in both the montane and lowland forests at the border of the Southern Alps between ca. 8500 and 5700 years ago. Two major declines in fir, at about 7300–7000 cal b.p. and at ca. 6000 cal b.p., followed by the local extinction of the species are characteristic of the area below ca. 1000 m a.s.l. In order to test the impact of fire on the population dynamics of silver fir, a dynamic model (DisCForm) with a fire module was applied to simulate the early- and mid-Holocene forest development. Simulation outputs based on different fire scenarios were compared with the pollen record from Lago di Annone (226 m a.s.l.). The marked Abies decreases shown in the pollen record can be simulated with very intensive fire scenarios, but they do not result in an extinction of silver fir in the model. Low charcoal influx values related to the Abies declines in the palaeobotanical record suggest that fire was not the only reason for the extinction of silver fir. Human impact, as well as Holocene climatic changes leading to temporary moisture deficits and reduced adaptability due to low genetic variation may have had a significant impact on the Abies forests.

Keywords

Northern Italy Abies alba Pollen analysis Charcoal Fire history Dynamic forest model 

References

  1. Akeret Ö, Haas JN, Leuzinger U, Jacomet S (1999) Plant macrofossils and pollen in goat/sheep faeces from the Neolithic lake-shore settlement Arbon Bleiche 3, Switzerland. The Holocene 9:175–182CrossRefGoogle Scholar
  2. Andersen ST (1970) The relative pollen productivity and pollen representativity of North European trees and correction factors for pollen tree spectra. Danm Geol Unders Ser II (96):1–99Google Scholar
  3. Becker M (1989) The role of climate on present and past vitality of silver fir forests in the Vosges mountains of northern France. Can J Forest Res 19:1110–1117CrossRefGoogle Scholar
  4. Bergmann F, Gregorius HR, Larsen JB (1990) Levels of genetic variation in European silver fir (Abies alba). Are they related to the species’ decline? Genetica 82:1–10CrossRefGoogle Scholar
  5. Birks HJB (1997) Reconstructing environmental impacts of fire from the Holocene sedimentary record. In: Clark JS, Cachier H, Goldammer JG, Stocks BJ (eds) Sediment records of biomass burning and global change. NATO ASI Series I. Springer, Berlin, pp 295–311Google Scholar
  6. Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, LondonGoogle Scholar
  7. Brändli U-B (1998) Die häufigsten Waldbäume der Schweiz. WSL, Birmensdorf, p 278Google Scholar
  8. Buffi R (1987) Le specie forestali per la zona castanile insubrica. Mitteilungen Schweizerische Anstalt für das forstliche Versuchswesen 63:410–656Google Scholar
  9. Bugmann HKM (1994) On the ecology of mountainous forests in a changing climate: a simulation study. PhD Dissertation No. 10638, ETH ZürichGoogle Scholar
  10. Bugmann HKM (1996) A simplified forest model to study composition along climate gradients. Ecology 77:2055–2074CrossRefGoogle Scholar
  11. Carcaillet C, Muller SD (2005) Holocene tree-limit and distribution of Abies alba in the French Alps: anthropogenic or climatic changes? Boreas 34:468–476CrossRefGoogle Scholar
  12. Clark JS (1990) Fire and climate change during the last 750 years in northwestern Minnesota. Ecol Monographs 60:135–159CrossRefGoogle Scholar
  13. Cormack RM (1971) A review of classification. J Roy Stat Soc 134:321–353CrossRefGoogle Scholar
  14. Delarze R, Calderlari D, Hainard P (1992) Effects of fire on forest dynamics in southern Switzerland. J Veg Sci 3:55–60CrossRefGoogle Scholar
  15. Desplanque C, Rolland C, Michalet R (1998) Dendroécologie comparée du sapin blanc et de l’épicéa commun dans les zones internes des vallées alpine de France. Écologie 29:351–355Google Scholar
  16. Faegri K, Iversen J (1975) Textbook of pollen analysis. Munksgaard, CopenhagenGoogle Scholar
  17. Gobet E, Tinner W, Hubschmid P, Jansen I, Wehrli M, Ammann B, Wick L (2000) Influence of human impact and bedrock differences on the vegetation history of the Insubrian Southern Alps. Veget Hist Archaeobot 9:175–187CrossRefGoogle Scholar
  18. Grimm EC (1992) Tilia 2.0 and Tilia×graph 1.18. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  19. Guicherd P (1994) Water relations of European silver fir (Abies alba Mill.) in 2 natural stands in the French Alps subject to contrasting climatic conditions. Annales des Sciences Forestières 51:599–611Google Scholar
  20. Haas JN, Richoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8:301–309CrossRefGoogle Scholar
  21. Huntley B, Birks HJB (1983) An atlas of past and present pollen maps of Europe: 0–13,000 years ago. Cambridge University Press, London/New York/New Rochelle/Melbourne/SidneyGoogle Scholar
  22. Keller F, Lischke H, Mathis T, Möhl A, Wick L, Ammann B, Kienast F (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeoecological record. Ecol Model 152:109–127CrossRefGoogle Scholar
  23. Konnert M, Bergmann F (1995) The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Syst Evol 195:19–30CrossRefGoogle Scholar
  24. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Fischer, JenaGoogle Scholar
  25. Larsen JB (1981) Waldbauliche und ertragskundliche Erfahrungen mit verschiedenen Provenienzen der Weisstanne (Abies alba Mill.) in Dänemark. Forstwissenschaftliches Centralblatt 100:180–183Google Scholar
  26. Larsen JB (1986) Das Tannensterben: Eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Komplexkrankheit der Weisstanne (Abies alba Mill.). Forstwissenschaftliches Centralblatt 105:381–396Google Scholar
  27. Lévy G, Becker M (1987) Le déperrissement du sapin dans les Vosges: rôle primordiale de déficits d’alimentation en eau. Annales des Sciences Forestières 44:403–416Google Scholar
  28. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. PNAS 99:14590–14594CrossRefGoogle Scholar
  29. Lischke H (1998) Simulationsstudien der Reaktion auf einen schnellen Klimawechsel. Zusammensetzung der Arten im Schweizer Wald Kompet-Zentr Holz 6:12–14Google Scholar
  30. Lischke H, Löffler T, Fischlin A (1998) Aggregation of individual trees and patches in forest succession models — Capturing variability with height structured random dispersions. Theor Popul Biol 54:213–226CrossRefGoogle Scholar
  31. Lischke H, Lotter A, Fischlin A (2000) Untangling a post-glacial pollen record with forest model simulations and independent climate data. Ecol Model 150:1–21CrossRefGoogle Scholar
  32. Löffler TJ, Lischke H (2001) Incorporation and influence of variability in an aggregated forest model. Nat Res Model 14:103–137CrossRefGoogle Scholar
  33. Lotter A, Kienast F (1990) Validation of a forest succession model by means of annually laminated sediments. Geol Surv Finland 14:25–31Google Scholar
  34. Mathis T, Keller F, Möhl A, Lischke H (2001) Influence of climate, species immigration, fire, and men on forest dynamics in Northern Italy from 6000 cal B.P. to today. In: Visconti et al. (eds) Global change and protected areas. Kluwer, Dordrecht, pp 195–208Google Scholar
  35. Oberdorfer E (1964) Der insubrische Vegetationskomplex, seine Struktur und Abgrenzung gegen die submediterrane Vegetation in Oberitalien und in der Südschweiz. Beiträge Naturkundlicher Forschung SW-Deutschland 23:141–187Google Scholar
  36. Schneider R (1978) Pollenanalytische Untersuchungen zur Kenntnis der spät- und postglazialen Vegetationsgeschichte am Südrand der Alpen zwischen Turin und Varese (Italien). Botanische Jahrbücher für Systematik 100:26–109Google Scholar
  37. Schneider R (1985) Palynological research in the southern and southeastern Alps between Torino and Trieste. Dissertationes Botanicae 87:83–103Google Scholar
  38. Schneider R, Tobolski K (1985) Lago di Ganna — Late glacial and Holocene environments of a lake in the southern Alps. Diss Bot 87:229–271Google Scholar
  39. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen et Spores 13:615–621Google Scholar
  40. Terhürne-Berson R, Litt T, Cheddadi R (2004) The spread of Abies throughout Europe since the last glacial period: combined macrofossil and pollen data. Veget Hist Archaeobot 13:257–268CrossRefGoogle Scholar
  41. Tinner W, Conedera M (1995) Indagini paleobotaniche sulla storia della vegetazione e degli incendi forestali durante l’Olocene al lago di Origlio (Ticino meridionale). Bolletino della Società Ticinese di Scienze Naturali 83:91–106Google Scholar
  42. Tinner W, Conedera M, Ammann B, Gäggeler HW, Gedye S, Jones R, Sägesser B (1998) Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. The Holocene 8:31–42CrossRefGoogle Scholar
  43. Tinner W, Hubschmid P, Wehrli M, Ammann B, Conedera M (1999) Long-term forest fire ecology and dynamics in southern Switzerland. J Ecol 87:273–289CrossRefGoogle Scholar
  44. Tinner W, Conedera M, Gobet E, Hubschmid P, Wehrli M, Ammann B (2000) A palaeoecological attempt to classify fire-sensitivity of trees in the Southern Alps. The Holocene 10:565–574CrossRefGoogle Scholar
  45. Wick L (1989) Pollenanalytische Untersuchungen zur spät- und postglazialen Vegetationsgeschichte am Luganersee. Eclogae Geologica Helveticae 82:265–276Google Scholar
  46. Wick L (1996a) Spät- und postglaziale Vegetationsgeschichte in den Südalpen zwischen Comersee und Splügenpass (Norditalien). Dissertation, University of BernGoogle Scholar
  47. Wick L (1996b) Late-Glacial and early-Holocene palaeoenvironments in Brianza, N Italy. Il Quaternario 9:653–660Google Scholar
  48. Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the Central Alps as indicators of Holocene climatic oscillations. Arctic Alpine Res 29:445–458CrossRefGoogle Scholar
  49. Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene vegetation development in the catchment of Sägistalsee (1935 m a.s.l.), a small lake in the Swiss Alps. J Paleolimnol 30:261–272CrossRefGoogle Scholar
  50. Wolda H (1981) Similarity indices, sample size and diversity. Oecologica 50:296–302CrossRefGoogle Scholar
  51. Zoller H (1960) Pollenanalytische Untersuchungen zur Vegetationsgeschichte der insubrischen Schweiz. Denkschrift der Schweizerischen Naturforschenden Gesellschaft 83:45–156Google Scholar
  52. Zoller H (1977) Alter und Ausmass postglazialer Klimaschwankungen in den Schweizer Alpen. In: Frenzel B (ed) Dendrochronologie und postglaziale Klimaschwankungen in Europa. Erdwissenschaftliche Forschung 13. Steiner, Wiesbaden, pp 271–281Google Scholar
  53. Zoller H, Kleiber H (1971) Vegetationsgeschichtliche Untersuchungen in der montanen und subalpinen Stufe der Tessintäler. Verhandlungen Naturforschende Gesellschaft Basel 81:90–154Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland

Personalised recommendations