Advertisement

Vegetation History and Archaeobotany

, Volume 14, Issue 4, pp 510–517 | Cite as

Water management practices and climate in ancient agriculture: inferences from the stable isotope composition of archaeobotanical remains

  • Juan P. Ferrio
  • José Luis ArausEmail author
  • Ramon Buxó
  • Jordi Voltas
  • Jordi Bort
Original Article

Abstract

Carbon isotope discrimination (Δ13C) in charred grains from archaeological sites provides reliable information about water availability of ancient crops. However, as cereals are cultivated plants, they may reflect not only climatic fluctuations, but also the effect on water status of certain agronomic practices, such as sowing in naturally wet soils or irrigation. In this work, we propose a methodological approach to combine Δ13C data from different plant species, in order to discriminate between climate-derived and anthropogenic effects on ancient crops. We updated previous models for estimating water inputs from Δ13C of cereal grains of Hordeum vulgare and Triticum aestivum/durum, and we applied them to published data from several archaeological sites, including samples from the Neolithic to the present day in northeast and southeast Spain, as well as from the Neolithic site of Tell Halula (northwest Syria). We found an important decrease in water availability from the Neolithic to the present time in the three areas of study, especially clear for the two driest areas (southeast Spain and northwest Syria). Potential differences in water management practices between wheat and barley, as well as between cereal and legume crops (Vicia faba and Lens culinaris), are also discussed on the basis of the comparison of Δ13C values across several archaeological sites.

Keywords

Carbon isotope discrimination (Δ13C) Wheat Barley Legumes Middle Euphrates Iberian Peninsula 

Notes

Acknowledgements

This work was partly supported by the CICYT project BTE2001-3421-C02 and the EC project MENMED (INCO-MED-ICA3-CT-2002-10022). We thank M. Charles, J.L. Vernet, S. Jacomet and F. Bittmann for the useful comments, which have contributed significantly to improve the original manuscript. J.P. Ferrio has a PhD fellowship from the Generalitat de Catalunya

References

  1. Araus, J.L., Buxó, R. (1993). Changes in carbon isotope discrimination in grain cereals from the north-western Mediterranean basin during the past seven millenia. Australian Journal of Plant Physiology, 20, 117–128Google Scholar
  2. Araus, J.L., Febrero, A., Buxó, R., Camalich, M.D., Martin, D., Molina, F., Rodriguez-Ariza, M.O., Romagosa, I. (1997a). Changes in carbon isotope discrimination in grain cereals from different regions of the western Mediterranean basin during the past seven millennia. Palaeoenvironmental evidence of a differential change in aridity during the late Holocene. Global Change Biology, 3, 107–118CrossRefGoogle Scholar
  3. Araus, J.L., Febrero, A., Buxó, R., Rodriguez-Ariza, M.O., Molina, F., Camalich, M.D., Martin, D., Voltas, J. (1997b). Identification of ancient irrigation practices based on the carbon isotope discrimination of plant seeds: a case study from the south-east Iberian Peninsula. Journal of Archaeological Science, 24, 729–740CrossRefGoogle Scholar
  4. Araus, J.L., Febrero, A., Catala, M., Molist, M., Voltas, J., Romagosa, I. (1999a). Crop water availability in early agriculture: evidence from carbon isotope discrimination of seeds from a tenth millennium BP site on the Euphrates. Global Change Biology, 5, 201–212CrossRefGoogle Scholar
  5. Araus, J.L., Slafer, G.A., Romagosa, I. (1999b). Durum wheat and barley yields in antiquity estimated from 13C discrimination of archaeological grains: a case study from the Western Mediterranean Basin. Australian Journal of Plant Physiology, 26, 345–352CrossRefGoogle Scholar
  6. Araus, J.L., Slafer, G.A., Buxó, R., Romagosa, I. (2003a). Productivity in prehistoric agriculture: physiological models for the quantification of cereal yields as an alternative to traditional approaches. Journal of Archaeological Science, 30, 681–693CrossRefGoogle Scholar
  7. Araus, J.L., Villegas, D., Aparicio, N., García-del-Moral, L.F., Elhani, S., Rharrabti, Y., Ferrio, J.P., Royo, C. (2003b). Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Science, 43, 170–180CrossRefGoogle Scholar
  8. Bar-Yosef, O., Kislev, M.E., Harris, D.R., Hillman, G.C. (1989). Early farming communities in the Jordan Valley. In: Harris, D.R., Hillman, G.C. (eds) Foraging and farming: the evolution of plant exploitation, vol. 13. Unwin Hyman, London, pp 632–642Google Scholar
  9. Barriendos, M., Martín-Vide, J. (1998). Secular climatic oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th centuries). Climatic Change, 38, 473–491CrossRefGoogle Scholar
  10. Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836CrossRefGoogle Scholar
  11. Creus, J., Fernández-Cancio, A., Manrique-Menéndez, E. (1996). Evolución de la temperatura y precipitación anuales desde el año 1400 en el sector central de la Depresión del Ebro [Evolution of annual temperature and precipitation since 1400 a.d. in the central Ebro Depression]. Lucas Mallada, 8, 9–27Google Scholar
  12. Eyer, M., Leuenberger, M., Nyfeler, P., Stocker, T.F. (2004). Comparison of two δ13CO2 records measured on air from the EPICA Dome C and Kohnen Station ice cores. Geophysical Research Abstracts, 6, 1990Google Scholar
  13. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537CrossRefGoogle Scholar
  14. Farquhar, G.D., O’Leary, M.H., Berry, J.A. (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9, 121–137CrossRefGoogle Scholar
  15. February, E.C. (2000). Archaeological charcoal and dendrochronology to reconstruct past environments of southern Africa. South African Journal of Science, 96, 111–116Google Scholar
  16. Ferrio, J.P., Alonso, N., Voltas, J., Araus, J.L. (2004). Estimating grain weight in archaeological cereal crops: a quantitative approach for comparison with current conditions. Journal of Archaeological Science, 31, 1635–1642CrossRefGoogle Scholar
  17. Ferrio, J.P., Bertran, E., Nachit, M.M., Royo, C., Araus, J.L. (2001). Near infrared reflectance spectroscopy as a potential surrogate method for the analysis of Δ13C in mature kernels of durum wheat. Australian Journal of Agricultural Research, 52, 809–816CrossRefGoogle Scholar
  18. Ferrio, J.P., Florit, A., Vega, A., Serrano, L., Voltas, J. (2003a). Δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia, 137, 512–518CrossRefGoogle Scholar
  19. Ferrio, J.P., Voltas, J. (2005). Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus Series B-Chemical and Physical Meteorology, in pressGoogle Scholar
  20. Ferrio, J.P., Voltas, J., Araus, J.L. (2003b). Use of carbon isotope composition in monitoring environmental changes. Management of Environmental Quality, 14, 82–98CrossRefGoogle Scholar
  21. Folland, C.K., Karl, T.R., Christy, J.R., Clarke, R.A., Gruza, G.V., Jouzel, J., Mann, M.E., Oerlemans, J., Salinger, M.J., Wang, S.W. (2001). Observed climate variability and change. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds) Climate Change 2001: the scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. (http://www.grida.no/climate/ipcc_tar/wg1/index.htm), pp 101–181Google Scholar
  22. Francey, R.J., Allison, C.E., Etheridge, D.M., Trudinger, C.M., Enting, I.G., Leuenberger, M., Langenfelds, R.L., Michel, E., Steele, L.P. (1999). A 1000-year high precision record of delta C-13 in atmospheric CO2. Tellus Series B-Chemical and Physical Meteorology, 51, 170–193CrossRefGoogle Scholar
  23. Harlan, J.R. (1998). The living fields: our agricultural heritage. Cambridge University Press, CambridgeGoogle Scholar
  24. Heaton, T.H.E. (1999). Spatial, species, and temporal variations in the13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science, 26, 637–649CrossRefGoogle Scholar
  25. Heiser, C.B. Jr. (1990). Seed to civilization: the story of food, 3rd edn. Harvard University Press, CambridgeGoogle Scholar
  26. Helbæk, H. (1960). Cereals and weed grasses in Phase A. In: Braidwood, R.J., Braidwood, L.S. (eds) Excavations in the plain of Antioch I. University of Chicago Press, Chicago, pp 540–543Google Scholar
  27. Hillman, G.C. (1973). Agricultural productivity and past population potential at Asvan. Anatolian Studies, 23, 225–240CrossRefGoogle Scholar
  28. Hillman, G.C. (1996). Late Pleistocene changes in wild plant-foods available to hunter-gatherers of the northern Fertile Crescent: possible preludes to cereal cultivation. In: Harris, D.R. (ed) The origins and spread of pastoralism in Eurasia. University College London Press, London, pp 159–203Google Scholar
  29. Hubick, K.T., Gibson, A., Ehleringer, J.R., Hall, A.E., Farquhar, G.D. (1993). Diversity in the relationship between carbon isotope discrimination and transpiration efficiency when water is limited. In: Ehleringer, J.R., Hall, A.E., Farquhar, G.D. (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 311–325Google Scholar
  30. Indermühle, A., Stocker, T.F., Joos, F., Fischer, H., Smith, H.J., Wahlen, M., Deck, B., Mastroianni, D., Tschumi, J., Blunier, T., Meyer, R., Stauffer, B. (1999). Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 398, 121–126CrossRefGoogle Scholar
  31. Jones, G., Charles, M., Colledge, S.M., Halstead, P. (1995). Towards the archaeological recognition of winter-cereal irrigation: an investigation of modern weed ecology in northern Spain. In: Kroll, H., Pasternak, R. (eds) Res Archaeobotanicae—9th symposium IWGP, Kiel, pp 49–68Google Scholar
  32. Korol, R.L., Kirschbaum, M.U.F., Farquhar, G.D., Jeffreys, M. (1999). Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology, 19, 551–562Google Scholar
  33. Lambers, H., Chapin, F.S. III, Pons, T.L. (1998). Plant physiological ecology. Springer, Berlin Heildelberg New YorkGoogle Scholar
  34. Leuenberger, M., Siegenthaler, U., Langway, C.C. (1992). Carbon isotope composition of atmospheric CO2 during the last ice age from an Antartic ice core. Nature, 357, 488–490CrossRefGoogle Scholar
  35. Marino, B.D., DeNiro, M.J. (1987). Isotope analysis of archaeobotanicals to reconstruct past climates: effects of activities associated with food preparation on carbon, hydrogen and oxygen isotope ratios of plant cellulose. Journal of Archaeological Science, 14, 537–548CrossRefGoogle Scholar
  36. Riera, S., Wansard, G., Julià, R. (2004). 2000-year environmental history of a karstic lake in the Mediterranean pre-Pyrenees: the Estanya lakes (Spain). Catena, 55, 293–324CrossRefGoogle Scholar
  37. Rosen, A., Weiner, S. (1994). Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science, 21, 125–132CrossRefGoogle Scholar
  38. Saurer, M., Siegenthaler, U. (1989). 13C/12C isotope ratios in trees are sensitive to relative humidity. Dendrochronologia, 7, 9–13Google Scholar
  39. Stuiver, M., Braziunas, T.F. (1987). Tree cellulose13C/12C isotope ratios and climate change. Nature, 328, 58–60CrossRefGoogle Scholar
  40. Van-Klinken, G.J., van der Plicht, H., Hedges, R.E.M. (1994). Bone 13C/12C ratios reflect (palaeo-) climatic variation. Geophysical Research Letters, 21, 445–448CrossRefGoogle Scholar
  41. Vernet, J.L. (1990). The bearing of phyto-archaeological evidence on discussions of climatic change over recent millennia. Philosophical Transactions of the Royal Society of London, A330, 671–677CrossRefGoogle Scholar
  42. Vernet, J.L., Pachiaudi, C., Bazile, F., Durand, A., Fabre, L., Heinz, C., Solari, M.E., Thiebault, S. (1996). Le δ13C de charbons de bois préhistoriques et historiques méditerranéens, de 35000 BP a l’àctuel. Premiers resultats. Comptes Rendus de l’Academie des Sciences, série II a, 323, 319–324Google Scholar
  43. Voltas, J., Romagosa, I., Lafarga, A., Armesto, A.P., Sombrero, A., Araus, J.L. (1999). Genotype by environment interaction for grain yield and carbon isotope discrimination of barley in Mediterranean Spain. Australian Journal of Agricultural Research, 50, 1263–1271CrossRefGoogle Scholar
  44. Warren, C.R., McGrath, J.F., Adams, M.A. (2001). Water availability and carbon isotope discrimination in conifers. Oecologia, 127, 476–486CrossRefGoogle Scholar
  45. Willcox, G. (1996). Evidence for plant exploitation and vegetation history from three Early Neolithic pre-pottery sites on the Euphrates (Syria). Vegetation History and Archaeobotany, 5, 143–152CrossRefGoogle Scholar
  46. Wilson, D.G. (1984). The carbonisation of weed seeds and their representation in macrofossil assemblages. In: van Zeist, W., Casparie, W.A. (eds) Balkema, Rotterdam, pp 201–206Google Scholar
  47. Wright, P. (2003). Preservation or destruction of plant remains by carbonization? Journal of Archaeological Science, 30, 577–583CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Juan P. Ferrio
    • 1
  • José Luis Araus
    • 2
    Email author
  • Ramon Buxó
    • 3
  • Jordi Voltas
    • 1
  • Jordi Bort
    • 2
  1. 1.Departament de Producció Vegetal i Ciencia Forestal, E.T.S.E.AUniversitat de LleidaLleidaSpain
  2. 2.Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Museu d’Arqueologia de CatalunyaGironaSpain

Personalised recommendations