Vegetation History and Archaeobotany

, Volume 15, Issue 3, pp 169–179 | Cite as

New evidence of possible crop introduction to north-eastern Europe during the Stone Age

Cerealia pollen finds in connection with the Akali Neolithic settlement, East Estonia
  • Anneli Poska
  • Leili SaarseEmail author
Original Article


Long term (from the Mesolithic to the Bronze Age) habitation of the Akali settlement on a clearly defined bog-island in East Estonia is used as an example of transitional development from a prosperous foragers’ habitation centre to a hinterland of established farming cultures, taking place through availability, substitution and consolidation phases of crop farming in the boreal forest zone. The pre-Neolithic finds of Triticum and Cannabis t. pollen at c. 5600 b.c. are interpreted as possible indications of the acquaintance of foragers with farming products, through contacts with central European agrarian tribes during the availability phase. The substitution phase is marked by more or less scattered pollen finds of various cereals and hemp and, at Akali, is connected with Neolithic period 4900–1800 b.c. An increasing importance of crop farming in the economy is characteristic of the consolidation phase, but because natural conditions are unfavourable for arable land-use, a regression of human presence is recorded during the second part of the Neolithic. The settlement was abandoned during the Bronze Age at the time when crop farming become the basis of the economy in Estonia. The re-colonisation of the area, traced to ca. a.d. 1200, took place for political reasons rather than through increasing suitability of the landscape.


Estonia Cerealia pollen Stone Age Bronze Age Crop introduction Boreal-nemoral forest zone 



We are thankful to late L.-K. Königsson, A. Karelson, A. Heinsalu, T. Moora and S. Veski for help during fieldwork, to referees and to S. Hicks for critical remarks and linguistic revision. The current study was supported financially by the Estonian Government (JDT 0332626s03) and the Estonian Science Foundation (grants 4963 and 5923)


  1. Andersen S-T (1979) Identification of wild grass and cereal pollen. In: Aaby B (ed) Årbog 1978. Danmarks Geologiske Undersøgelse, pp 69–92Google Scholar
  2. de Beaulieu J-L, Goeury C (1987) Zonation automatique applique l’analyse pollinique: exemple de la narse d’Ampoix (Puy de Dome, France). Bulletin AFEQ 1:49–61Google Scholar
  3. Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23:225–245Google Scholar
  4. Behre K-E (1988) The role of man in European vegetation history. In: Huntley B, Webb T III (eds) Vegetation history. Handbook of vegetation science 7. Kluwer, Dordrecht, pp 633–672Google Scholar
  5. Bennett KD (1994) ‘psimpoll’ version 2.23: a C program for analysing pollen data and plotting pollen diagrams. INQUA Commission for the study of the Holocene: Working group on data-handling methods. Newsletter 11:4–6Google Scholar
  6. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132:155–170CrossRefGoogle Scholar
  7. Bennett KD (1998) Documentation for psimpoll 3.01 and pscomb 1.03. C programs for plotting pollen diagrams and analysing pollen data. From URL: manual/3.00/psimpoll.htmGoogle Scholar
  8. Berglund BE (1991) The cultural landscape during 6000 years in southern Sweden – the Ystad project. Ecological Bulletins No. 41. Munksgaard, CopenhagenGoogle Scholar
  9. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484Google Scholar
  10. Beug H-J (1961) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Lieferung 1. Fischer, StuttgartGoogle Scholar
  11. Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2:1–10Google Scholar
  12. Dickson C (1988) Distinguishing cereal from wild type grass pollen: some limitations. Circaea 5:67–71Google Scholar
  13. Edwards KJ (1988) The Hunter-Gatherer/Agricultural Transition and the Pollen Record in the British Isles. In: Birks HH, Birks HJB, Kaland PE, Moe D (eds) The Cultural Landscape – Past, Present and Future. Cambridge University Press, Cambridge, pp 255–266Google Scholar
  14. Edwards KJ (1989) The cereal pollen record and early agriculture. In: Milles A, Williams D, Gardner N (eds) The Beginnings of Agriculture, International Series 496. British Archaeological Reports, Oxford, pp 113–135Google Scholar
  15. Erdtman G (1936) New methods in pollen analysis. Svensk Botanical Tidsskrift 30:154–164Google Scholar
  16. Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, ChichesterGoogle Scholar
  17. Gebauer AB, Price TD (1992) Foragers to farmers: an introduction. In: Gebauer AB, Price TD (eds) Transitions to Agriculture in Prehistory. Monographs in world Archaeology 4. Wisconsin, Madison, pp 1–10Google Scholar
  18. Greig J (1996) Great Britain – England. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15 000 years. Wiley, Chichester, pp 15–64Google Scholar
  19. Grimm E (1991) TILIA and TILIA. GRAPH. Illinois State Museum, SpringfieldGoogle Scholar
  20. Haas JN (1996) Pollen and plant macrofossil evidence of vegetation change at Wallisellen-Langachermoos (Switzerland) during the Mesolithic-Neolithic transition 8500 to 6500 years ago. Dissertationes Botanicae 267. Cramer, Berlin StuttgartGoogle Scholar
  21. Hang T, Miidel A (1999) Holocene history of the lake. In: Miidel A, Raukas A (eds) Lake Peipsi Geology. Sulemees Publishers, Tallinn, pp 131–136Google Scholar
  22. Hang T, Miidel A, Kalm V, Kimmel K (2001) New data on the distribution and stratigraphy of the bottom deposits of Lake Peipsi, Eastern Estonia. Proceedings of the Estonian Academy of Sciences, Geology 50:233–253Google Scholar
  23. Hang T, Miidel A, Pirrus R (1995) Late Weichselian and Holocene water-level changes of Lake Peipsi, Eastern Estonia. PACT 50:121–131Google Scholar
  24. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25:101–110CrossRefGoogle Scholar
  25. Hicks S (1992) Pollen evidence for the activities of man in peripheral areas. University of Joensuu, Publications of Karelian Institute 102:21–39Google Scholar
  26. Ilomets M (1984) On the cyclic nature of the development of bogs. In: Punning J-M (ed) Estonia. Nature, Man, Economy. Academy of Sciences of Estonian SSR. Estonian Geographical Society, pp 68–77Google Scholar
  27. Ilves E, Medne L (1979) The Holocene chronostratigraphy of the western Lubans Lowland (Latvian SSR). Proceedings of the Estonian Academy of Sciences, Geology 28:26–32 (in Russian with English summary)Google Scholar
  28. Innes BI, Blackford JJ, Davey PJ (2003) Dating the introduction of cereal cultivation to the British Isles: early palaeoecological evidence from the Isle of Man. Journal of Quaternary Science 18:603–613CrossRefGoogle Scholar
  29. Jaani A (2001) The annual water regime. In: Nõges T (ed) Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, pp 49–50Google Scholar
  30. Jaanits L (1959) Siedlungsplätze des Neolitikums und der Frühen Metallzeit im Mündungsgebiet des Emajõgi. Estonian Academy of Sciences, Institute of History. Tallinn (in Russian with German summary)Google Scholar
  31. Jaanits L, Moora T (1999) Peipsimaast, selle kujunemis- ja asustusloost. (The history of population in the Peipsi area (Peipsiland)). In: Pihu E, Raukas A (eds) Peipsi. Keskkonnaministeeriumi info- ja tehnokeskus, Tallinn, pp 182–198Google Scholar
  32. Jaanits L, Moora T, Rõuk A-M (1999) Ancient habitation and the impact of primitive society on nature. In: Miidel A, Raukas A (eds) Lake Peipsi Geology. Sulemees Publishers, Tallinn, pp 136–139Google Scholar
  33. Khotinsky NA (1993) Anthropogenic changes in the landscapes of the Russian Plain during the Holocene. Grana, Supplement 2:70–74CrossRefGoogle Scholar
  34. Kimmel K, Pirrus R, Raukas A (1999) Holocene deposits. In: Miidel A, Raukas A (eds) Lake Peipsi Geology. Sulemees Publishers, Tallinn, pp 42–52Google Scholar
  35. Kriiska A (2000) Corded Ware Culture Sites in North-Eastern Estonia. De temporibus antiquissimis ad honorem Lembit Jaanits. Muinasaja teadus 8:59–79Google Scholar
  36. Königsson L-K, Possnert G, Hammar T (1997) Economical and Cultural Changes in the Landscape Development at Novgorod. TOR 29:353–385Google Scholar
  37. Küster H (1988) Vom Werden einer Kulturlandschaft – Vegetationsgeschichtliche Studien am Auerberg (Südbayern). Acta humaniora 3:1–163Google Scholar
  38. Lang V (1999a) Early Farming in the Eastern Baltic region and Finland: Some Introductory Remarks. PACT 57:269–273Google Scholar
  39. Lang V (1999b) Pre-Christian History of Farming in the Eastern Baltic Region and Finland: A Synthesis. PACT 57:359–372Google Scholar
  40. Lang V, Kriiska A (2001) Eesti esiaja periodiseering ja kronoloogia. (Periods and chronology of Estonian Prehistory). Eesti Arheoloogia Ajakiri 5:83–109Google Scholar
  41. Levkovskaya GM (1987) Priroda i chelovek v srednem golocene Lubanskoj nizhiny (Environment and Prehistoric Man during the Middle Holocene in the Lubans Lowland). Zinatne, Riga (in Russian)Google Scholar
  42. Moora T, Ilomets M, Jaanits L (1988) Muistsetest loodusoludest Akali kiviaja asulakoha lähiümbruses. (On ancient natural conditions in the vicinity of the Akali Neolithic settlement). In: Rõuk A-M, Selirand J (eds) Loodusteaduslikke meetodeid Eesti arheoloogias. Eesti NSV TA Ajaloo Instituut, Tallinn, pp 26–38Google Scholar
  43. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell Scientific Publications, LondonGoogle Scholar
  44. O’Connell M (1987). Early cereal-type pollen records from Connemara, western Ireland and their possible significance. Pollen et Spores 29:207–224Google Scholar
  45. Poska A (2001) Human impact on Vegetation of Coastal Estonia during the Stone Age. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Sciences and Technology, 652Google Scholar
  46. Punning J-M, Liiva A, Ilves E (1968) Spisok radiouglerodnyh datirovok Instituta Zoologij i Botaniki III (List of radiocarbon dates of the Institute of Zoology and Botany). Eesti NSV Teaduste Akadeemia Toimetised, Bioloogia 4:116–125 (in Russian)Google Scholar
  47. Ralska-Jasiewiczowa M, Latałowa M (1996) Poland. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15 000 years. Regional synthesis of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 403–472Google Scholar
  48. Rimantiene R (1999) Traces of Agricultural Activity in the Stone Age Settlements of Lithuania. PACT 57:275–290Google Scholar
  49. Rösch M (1990) Vegetationsgeschichtliche Untersuchungen im Durchenbergried. In: Siedlungsarchäologie im Alpenvorland II. Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg 37:9–64Google Scholar
  50. Saarse L, Harrison SP (1992) Holocene lake-level changes in the eastern Baltic region. In: Punning J-M (ed) Estonia. Man and Nature. Estonian Geographical Society, Tallinn, pp 6–20Google Scholar
  51. Saarse L, Mäemets H, Pirrus R, Rõuk A-M, Sarv A, Ilves E (1996) Estonia. In: Berglund BE, Birks HJB, Ralska-Jasiewiczowa M, Wright HE (eds) Palaeoecological events during the last 15 000 years. Regional synthesis of palaeoecological studies of lakes and mires in Europe. Wiley, Chichester, pp 367–393Google Scholar
  52. Sarv A, Ilves E (1975) Über das Alter der holozänen Ablagerungen im Mündungsgebiet des Flusses Emajõgi (Saviku). Proceedings of Estonian Academy of Sciences. Chemistry, Geology 24:64–69 (in Russian with German summary)Google Scholar
  53. Seglinš V, Kalnina L, Lacis A (1999) The Lubans Plain, Latvia, as a Reference Area for Long Term Studies of Human Impact in the Environment. PACT 57:105–129Google Scholar
  54. Stančikaitė M (2000) Natural and human initiated environmental changes throughout the Late Glacial and Holocene in Lithuania territory. Doctoral dissertation, Physical sciences, Geology, VilniusGoogle Scholar
  55. Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127–1151Google Scholar
  56. Vasks A, Kalnina L, Ritums R (1999) The Introduction and Pre-Christian History of Farming in Latvia. PACT 57:291–304Google Scholar
  57. Vassar A (1939) Iru Linnapära. Muistse Eesti linnused. 1936–1938.a. uurimise tulemused (Iru hillfort. The ancient Estonian strongholds. Results of excavation 1936–1938). Tartu, pp 53–100Google Scholar
  58. Vuorela I, Lempiäinen T (1988) Archaeobotany of the site of the oldest grain find in Finland. Annales Botanici Fennici 25:33–45Google Scholar
  59. Vuorela I, Saarnisto M, Lempiäinen T, Taavitsainen J-P (2001) Stone Age to recent land-use history at Pegrema, northern Lake Onega, Russian Karelia. Vegetation History and Archaeobotany 10:121–138CrossRefGoogle Scholar
  60. Zagorskis F (1963) Kreiči Neolithic dwelling (Kreiči Neolithic settlement). Latvijas PSP Zinatnu Akademijas Vestis 4:23–35 (in Latvian)Google Scholar
  61. Zernickaya WP, Šimakowa GI (2000) Ślady działalności prehistorycznego człowieka na obszarze Biełorusi (na podstawie badań palynologicznych). In: Problemy paleogeografii późnego plejstocenu I holocenu. Materiały białorusko-polskiego seminarium. Grodno, pp 82–83Google Scholar
  62. Zvelebil M, Rowley-Conway P (1984) Transition to farming in northern Europe: a hunter-gatherer perspective. Norwegian Archaeological Review 17:104–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Geology at Tallinn University of TechnologyTallinnEstonia

Personalised recommendations