Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spatially Localized Structures in Lattice Dynamical Systems

Abstract

We investigate stationary, spatially localized patterns in lattice dynamical systems that exhibit bistability. The profiles associated with these patterns have a long plateau where the pattern resembles one of the bistable states, while the profile is close to the second bistable state outside this plateau. We show that the existence branches of such patterns generically form either an infinite stack of closed loops (isolas) or intertwined s-shaped curves (snaking). We then use bifurcation theory near the anti-continuum limit, where the coupling between edges in the lattice vanishes, to prove existence of isolas and snaking in a bistable discrete real Ginzburg–Landau equation. We also provide numerical evidence for the existence of snaking diagrams for planar localized patches on square and hexagonal lattices and outline a strategy to analyse them rigorously.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Aougab, T., Beck, M., Carter, P., Desai, S., Sandstede, B., Stadt, M., Wheeler, A.: Isolas versus snaking of localized rolls. J. Dyn. Differ. Equ. 31, 1199–1222 (2019)

  2. Avitabile, D., Lloyd, D.J.B., Burke, J., Knobloch, E., Sandstede, B.: To snake or not to snake in the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 9, 704–733 (2010)

  3. Beck, M., Knobloch, J., Lloyd, D., Sandstede, B., Wagenknecht, T.: Snakes, ladders, and isolas of localized patterns. SIAM J. Math. Anal. 41, 936–972 (2009)

  4. Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM J. Numer. Anal. 34, 1207–1236 (1997)

  5. Bramburger, J.J., Sandstede, B.: Localized patterns in planar bistable lattice systems. Preprint (2019)

  6. Burke, J., Knobloch, E.: Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211 (2006)

  7. Burke, J., Knobloch, E.: Snakes and ladders: localized states in the Swift–Hohenberg equation. Phys. Rev. A 360, 681–688 (2007)

  8. Carretero-González, R., Talley, J.D., Chong, C., Malomed, B.A.: Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation. Physica D 216, 77–89 (2006)

  9. Chapman, S.J., Kozyreff, G.: Exponential asymptotics of localised patterns and snaking bifurcation diagrams. Physica D 238, 319–354 (2009)

  10. Chong, C., Carretero-González, R., Malomed, B.A., Kevrekidis, P.G.: Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices. Physica D 238, 126–136 (2009)

  11. Chong, C., Pelinovsky, D.E.: Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete Cont. Dyn. Syst. Ser. S 4, 1019–1031 (2011)

  12. Chong, C., Pelinovsky, D.E., Schneider, : On the validity of the variational approximation in discrete nonlinear Schrödinger equations. Physica D 241, 115–124 (2012)

  13. Coullet, P., Riera, C., Tresser, C.: Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 3069–3072 (2000)

  14. Dawes, J.H.P.: The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. Philos. Trans. R. Soc. Lond. Ser. A 368, 3519–3534 (2010)

  15. Groves, M., Lloyd, D., Stylianou, A.: Pattern formation on the free surface of a ferrofluid: spatial dynamics and homoclinic bifurcation. Physica D 350, 1–12 (2017)

  16. Fiedler, B.: Global pathfollowing of homoclinic orbits in two-parameter flows. Pitman Res. 352, 79–146 (1996)

  17. Fiedler, B., Scheurle, J.: Discretization of homoclinic orbits, rapid forcing and “invisible” chaos. Mem. Am. Math. Soc. 119 (1996)

  18. Knobloch, E.: Spatial localization in dissipative systems. Ann. Rev. Condens. Matter Phys. 6, 325–359 (2015)

  19. Knobloch, J., Vielitz, M., Wagenknecht, T.: Non-reversible perturbations of homoclinic snaking scenarios. Nonlinearity 25, 3469–3485 (2012)

  20. Kozyreff, G., Chapman, S.J.: Asymptotics of large bound states of localised structures. Phys. Rev. Lett. 97, 044502 (2006)

  21. Kusdiantara, R., Susanto, H.: Homoclinic snaking in the discrete Swift–Hohenberg equation. Phys. Rev. E 96, 062214 (2017)

  22. Lloyd, D., O’Farrell, H.: On localised hotspots of an urban crime model. Physica D 253, 23–39 (2013)

  23. Lloyd, D.J.B., Sandstede, B., Avitabile, D., Champneys, A.R.: Localized hexagon patters of the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008)

  24. Makrides, E., Sandstede, B.: Predicting the bifurcation structure of localized snaking patterns. Physica D 253, 23–39 (2013)

  25. Makrides, E., Sandstede, B.: Existence and stability of spatially localized patterns. J. Differ. Equ. 266, 1073–1120 (2019)

  26. McCullen, N., Wagenknecht, T.: Pattern formation on networks: from localized activity to Turing patterns. Sci. Rep. 6, 27397 (2016)

  27. Meron, E.: Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012)

  28. Palmer, K.J.: Existence of transversal homoclinic points in a degenerate case. Rocky Mt. J. Math. 20, 1099–1118 (1990)

  29. Papangelo, A., Grolet, A., Salles, L., Hoffman, N., Ciavarella, M.: Snaking bifurcations of self-excited oscillator chain with cyclic symmetry. Commun. Nonlinear Sci. Numer. Simul. 44, 642–647 (2006)

  30. Pelinovsky, D.E.: Localization in Periodic Potentials. Cambridge University Press, Cambridge (2011)

  31. Pomeau, Y.: Front motion, metastability, and subcritical bifurcations in hydrodynamics. Physica D 130, 73–104 (1999)

  32. Sandstede, B., Xu, Y.: Snakes and isolas in non-reversible conservative systems. Dyn. Syst. 27, 317–329 (2012)

  33. Schecter, S.: Exchange lemmas 1: Deng’s lemma. J. Differ. Equ. 245, 392–410 (2008)

  34. Sheffer, E., Yizhaq, H., Shachak, M., Meron, E.: Mechanisms of vegetation-ring formation in water-limited systems. J. Theor. Biol. 273, 138–146 (2011)

  35. Taranenko, V.B., Ganne, I., Kuszelewicz, R.J., Weiss, C.O.: Patters and localized structures in bistable semiconductor resonators. Phys. Rev. A 61, 063818 (2000)

  36. Taylor, C., Dawes, J.H.P.: Snaking and isolas of localised states in bistable discrete lattices. Phys. Lett. A 375, 14–22 (2010)

  37. Tse, W.H., Ward, M.J.: Hotspot formation and dynamics for a continuum model of urban crime. Eur. J. Appl. Math. 27, 583–624 (2015)

  38. Vanag, V.K., Zhabotinksky, A.M., Epstein, I.R.: Pattern formation in the Belousov–Zhabotinksky reaction with photochemical global feedback. J. Phys. Chem. A 104, 11566–11577 (2000)

  39. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

  40. Woods, P.D., Champneys, A.R.: Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation. Physica D 129, 147–170 (1999)

  41. Yulin, A.V., Champneys, A.R.: Discrete snaking: multiple cavity solitons in saturable media. SIAM J. Appl. Dyn. Syst. 9, 391–431 (2010)

Download references

Acknowledgements

Bramburger was supported by an NSERC PDF. Sandstede was partially supported by the NSF through Grant DMS-1714429.

Author information

Correspondence to Jason J. Bramburger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Anthony Bloch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bramburger, J.J., Sandstede, B. Spatially Localized Structures in Lattice Dynamical Systems. J Nonlinear Sci (2019). https://doi.org/10.1007/s00332-019-09584-x

Download citation

Keywords

  • Localized structures
  • Lattice dynamical systems
  • Bifurcation
  • Diffeomorphism

Mathematics Subject Classification

  • 37Dxx
  • 37Gxx
  • 39Axx
  • 34C37
  • 35B36