Advertisement

Modulated Rotating Waves in the Magnetised Spherical Couette System

  • Ferran GarciaEmail author
  • Martin Seilmayer
  • André Giesecke
  • Frank Stefani
Article
  • 22 Downloads

Abstract

We present a study devoted to a detailed description of modulated rotating waves (MRW) in the magnetised spherical Couette system. The set-up consists of a liquid metal confined between two differentially rotating spheres and subjected to an axially applied magnetic field. When the magnetic field strength is varied, several branches of MRW are obtained by means of three-dimensional direct numerical simulations. The MRW originate from parent branches of rotating waves and are classified according to Rand’s (Arch Ration Mech Anal 79:1–37, 1982) and Coughling and Marcus (J Fluid Mech 234:1–18, 1992) theoretical description. We have found relatively large intervals of multistability of MRW at low magnetic field, corresponding to the radial jet instability known from previous studies. However, at larger magnetic field, corresponding to the return flow regime, the stability intervals of MRW are very narrow and thus they are unlikely to be found without detailed knowledge of their bifurcation point. A careful analysis of the spatio-temporal symmetries of the most energetic modes involved in the different classes of MRW will allow in the future a comparison with the HEDGEHOG experiment, a magnetised spherical Couette device hosted at the Helmholtz-Zentrum Dresden-Rossendorf.

Keywords

Magnetohydrodynamics Nonlinear waves Bifurcation theory Symmetry breaking Experiments Astrophysics 

Mathematics Subject Classification

37L15 37L20 65P40 76E25 76E30 85A30 

Notes

Acknowledgements

F. Garcia kindly acknowledges the Alexander von Humboldt Foundation for its financial support.

Supplementary material

332_2019_9557_MOESM1_ESM.gz (11.5 mb)
Supplementary material 1 (gz 11820 KB)
332_2019_9557_MOESM2_ESM.gz (1.4 mb)
Supplementary material 2 (gz 1429 KB)
332_2019_9557_MOESM3_ESM.gz (11.4 mb)
Supplementary material 3 (gz 11663 KB)

References

  1. Abbas, S., Yuan, L., Shah, A.: Simulation of spiral instabilities in wide-gap spherical Couette flow. Fluid Dyn. Res. 50(2), 025,507 (2018)MathSciNetCrossRefGoogle Scholar
  2. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. i—- Linear analysis. ii—Nonlinear evolution. Astrophys. J. 376, 214–233 (1991)CrossRefGoogle Scholar
  3. Brito, D., Alboussière, T., Cardin, P., Gagnière, N., Jault, D., La Rizza, P., Masson, J.P., Nataf, H.C., Schmitt, D.: Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment. Phys. Rev. E 83, 066,310 (2011)CrossRefGoogle Scholar
  4. Coughlin, K.T., Marcus, P.S.: Modulated waves in Taylor–Couette flow. Part 1. Analysis. J. Fluid Mech. 234, 1–18 (1992)CrossRefzbMATHGoogle Scholar
  5. Crawford, J.D., Knobloch, E.: Symmetry and symmetry-breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Mech. 23(1), 341–387 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Dormy, E., Soward, A.M. (eds.): Mathematical aspects of natural dynamos. In: The Fluid Mechanics of Astrophysics and Geophysics. vol. 13. Hartman & Hall/CRC (2007)Google Scholar
  7. Ecke, R.E., Zhong, F., Knobloch, E.: Hopf bifurcation with broken reflection symmetry in rotating Rayleigh–Bénard convection. Europhys. Lett. 19, 177–182 (1992)CrossRefGoogle Scholar
  8. Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53(4), 643–654 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Figueroa, A., Schaeffer, N., Nataf, H.C., Schmitt, D.: Modes and instabilities in magnetized spherical Couette flow. J. Fluid Mech. 716, 445–469 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and Platform Adaptation”Google Scholar
  11. Garcia, F., Net, M., García-Archilla, B., Sánchez, J.: A comparison of high-order time integrators for thermal convection in rotating spherical shells. J. Comput. Phys. 229, 7997–8010 (2010)CrossRefzbMATHGoogle Scholar
  12. Garcia, F., Net, M., Sánchez, J.: Continuation and stability of convective modulated rotating waves in spherical shells. Phys. Rev. E 93, 013,119 (2016)CrossRefGoogle Scholar
  13. Garcia, F., Sánchez, J., Dormy, E., Net, M.: Oscillatory convection in rotating spherical shells: low Prandtl number and non-slip boundary conditions. SIAM J. Appl. Dyn. Syst. 14(4), 1787–1807 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Garcia, F., Stefani, F.: Continuation and stability of rotating waves in the magnetized spherical couette system: secondary transitions and multistability. Proc. Roy. Soc. Lond. A 474, 20180,281 (2018)MathSciNetCrossRefGoogle Scholar
  15. Gissinger, C., Ji, H., Goodman, J.: Instabilities in magnetized spherical Couette flow. Phys. Rev. E 84, 026,308 (2011)CrossRefGoogle Scholar
  16. Golubitsky, M., LeBlanc, V.G., Melbourne, I.: Hopf bifurcation from rotating waves and patterns in physical space. J. Nonlinear Sci. 10, 69–101 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Golubitsky, M., Stewart, I.: The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space. Birkhäuser, Basel (2003)zbMATHGoogle Scholar
  18. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication. ACM Trans. Math. Softw. 34(3), 1–25 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Hollerbach, R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. Roy. Soc. Lond. A 465, 2003–2013 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Hollerbach, R., Junk, M., Egbers, C.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn. Res. 38, 257–273 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Hollerbach, R., Skinner, S.: Instabilities of magnetically induced shear layers and jets. Proc. Roy. Soc. Lond. A 457, 785–802 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Ji, H., Balbus, S.: Angular momentum transport in astrophysics and in the lab. Phys. Today 66(8), 27–33 (2013)CrossRefGoogle Scholar
  23. Jones, C.A.: Planetary magnetic fields and fluid dynamos. Ann. Rev. Astron. Astrophys. 43(1), 583–614 (2011)MathSciNetzbMATHGoogle Scholar
  24. Jordan, D., Smith, P.: Nonlinear Ordinary Differential Equations : An Introduction for Scientists and Engineers, Oxford Texts in Applied and Engineering Mathematics, vol. 10. Oxford University Press, Oxford (2007)Google Scholar
  25. Kaplan, E.J.: Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow. Phys. Rev. E 85(063016), 1–8 (2014)Google Scholar
  26. Kaplan, E.J., Nataf, H.C., Schaeffer, N.: Dynamic domains of the Derviche Tourneur sodium experiment: simulations of a spherical magnetized Couette flow. Phys. Rev. Fluids 3, 034,608 (2018)CrossRefGoogle Scholar
  27. Kasprzyk, C., Kaplan, E., Seilmayer, M., Stefani, F.: Transitions in a magnetized quasi-laminar spherical Couette flow. Magnetohydrodynamics 53(2), 393–401 (2017)CrossRefGoogle Scholar
  28. Krupa, M.: Bifurcations of relative equilibria. SIAM J. Math. Anal. 21(6), 1453–1486 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Laskar, J.: Frequency analysis of a dynamical system. Celestial Mech. Dyn. Astr. 56, 191–196 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Mamun, C.K., Tuckerman, L.S.: Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 80–91 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Morley, N.B., Burris, J., Cadwallader, L.C., Nornberg, M.D.: GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79(5), 056,107 (2008)CrossRefGoogle Scholar
  32. Palacios, A.: Cycling chaos in one-dimensional coupled iterated maps. Int. J. Bifurc. Chaos 12(8), 1859–1868 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Rand, D.: Dynamics and symmetry. Predictions for modulated waves in rotating fluids. Arch. Ration. Mech. An. 79(1), 1–37 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Rüdiger, G.: Differential Rotation and Stellar Convection: Sun and Solar-type Stars. Fluid mechanics of astrophysics and geophysics. Gordon and Breach Science Publishers (1989)Google Scholar
  35. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 865–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Sánchez, J., Garcia, F., Net, M.: Computation of azimuthal waves and their stability in thermal convection in rotating spherical shells with application to the study of a double-Hopf bifurcation. Phys. Rev. E 87, 033,014/ 1–11 (2013)Google Scholar
  38. Sánchez, J., Net, M.: Numerical continuation methods for large-scale dissipative dynamical systems. Eur. Phys. J. Spec. Top. 225, 2465–2486 (2016)CrossRefGoogle Scholar
  39. Schmitt, D., Alboussière, T., Brito, D., Cardin, P., Gagnière, N., Jault, D., Nataf, H.C.: Rotating spherical Couette flow in a dipolar magnetic field: experimental study of magneto-inertial waves. J. Fluid Mech. 604, 175–197 (2008)CrossRefzbMATHGoogle Scholar
  40. Schrauf, G.: The first instability in spherical Taylor–Couette flow. J. Fluid Mech. 166, 287–303 (1986)CrossRefzbMATHGoogle Scholar
  41. Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M., Hollerbach, R.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024,505 (2014)CrossRefGoogle Scholar
  42. Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassam, A.B., Antonsen, T.M., Lathrop, D.P.: Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114,502 (2004)CrossRefGoogle Scholar
  43. Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G., Szklarski, J.: Helical magnetorotational instability in a Taylor–Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066,303 (2009)CrossRefGoogle Scholar
  44. Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J., Hollerbach, R.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184,502 (2006)CrossRefGoogle Scholar
  45. Stewartson, K.: On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131–144 (1966)CrossRefzbMATHGoogle Scholar
  46. Travnikov, V., Eckert, K., Odenbach, S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)CrossRefzbMATHGoogle Scholar
  47. Tuckerman, L.S., Langham, J., Willis, A.: Order-of-Magnitude Speedup for Steady States and Traveling Waves via Stokes Preconditioning in Channelflow and Openpipeflow, pp. 3–31. Springer International Publishing, New York (2019)Google Scholar
  48. Wei, X., Hollerbach, R.: Magnetic spherical Couette flow in linear combinations of axial and dipolar fields. Acta Mech. 215, 1–8 (2010)CrossRefGoogle Scholar
  49. Wicht, J.: Flow instabilities in the wide-gap spherical Couette system. J. Fluid Mech. 738, 184–221 (2014)MathSciNetCrossRefGoogle Scholar
  50. Wulf, P., Egbers, C., Rath, H.J.: Routes to chaos in wide-gap spherical Couette flow. Phys. Fluids 11(6), 1359–1372 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Yuan, L.: Numerical investigation of wavy and spiral Taylor–Görtler vortices in medium spherical gaps. Phys. Fluids 24(12), 124,104 (2012)CrossRefGoogle Scholar
  52. Zikanov, O.Y.: Symmetry-breaking bifurcations in spherical Couette flow. J. Fluid Mech. 310, 293–324 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Anton Pannekoek Institute for AstronomyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations