Advertisement

Special Solutions to a Nonlinear Coarsening Model with Local Interactions

  • Constantin Eichenberg
Article
  • 9 Downloads

Abstract

We consider a class of mass transfer models on a one-dimensional lattice with nearest-neighbour interactions. The evolution is given by the backward parabolic equation \(\partial _t x = - \frac{\beta }{|\beta |} \Delta x^\beta \), with \(\beta \) in the fast diffusion regime \((-\infty ,0) \cup (0,1]\). Sites with mass zero are deleted from the system, which leads to a coarsening of the mass distribution. The rate of coarsening suggested by scaling is \(t^\frac{1}{1-\beta }\) if \(\beta \ne 1\) and exponential if \(\beta = 1\). We prove that such solutions actually exist by an analysis of the time-reversed evolution. In particular we establish positivity estimates and long-time equilibrium properties for discrete parabolic equations with initial data in \(\ell _+^\infty (\mathbb {Z})\).

Keywords

Coarsening Infinite particle system Backward fast diffusion Discrete parabolic regularity 

Mathematics Subject Classification

70F45 35K55 37L60 

Notes

Acknowledgements

The author would like to thank Barbara Niethammer and Juan J. L. Velázquez for inspiration, helpful discussions and proofreading. This work was supported by the German Research Foundation through the CRC 1060 The Mathematics of Emergent Effects.

References

  1. Bonforte, M., Vazquez, J.L.: Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240(2), 399–428 (2006)MathSciNetCrossRefGoogle Scholar
  2. Esedoglu, S., Greer, J.B.: Upper bounds on the coarsening rate of discrete, ill-posed nonlinear diffusion equations. Commun. Pure Appl. Math. 62(1), 57–81 (2009)MathSciNetzbMATHGoogle Scholar
  3. Esedoglu, S., Slepčev, D.: Refined upper bounds on the coarsening rate of discrete, ill-posed diffusion equations. Nonlinearity 21(12), 2759 (2008)MathSciNetCrossRefGoogle Scholar
  4. Giacomin, G., Olla, S., Spohn, H.: Equilibrium Fluctuations for \(\nabla _{\varphi }\) Interface Model. Ann. Probab. 29(3), 1138–1172, 07 (2001)MathSciNetCrossRefGoogle Scholar
  5. Glasner, K.B., Witelski, T.P.: Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302 (2003)CrossRefGoogle Scholar
  6. Glasner, K.B., Witelski, T.P.: Collision versus collapse of droplets in coarsening of dewetting thin films. Phys. D Nonlinear Phenom. 209(1), 80–104 (2005). Non-linear dynamics of thin films and fluid interfacesMathSciNetCrossRefGoogle Scholar
  7. Hellén, E.K.O., Krug, J.: Coarsening of sand ripples in mass transfer models. Phys. Rev. E 66, 011304 (2002)CrossRefGoogle Scholar
  8. Henseler, R., Niethammer, B., Otto, F.: A reduced model for simulating grain growth. In: Colli, Pierluigi, Verdi, Claudio, Visintin, Augusto (eds.) Free Boundary Problems, pp. 177–187. Birkhäuser Basel, Basel (2004)Google Scholar
  9. Helmers, M., Niethammer, B., Velázquez, J.J.L.: Mathematical analysis of a coarsening model with local interactions. J. Nonlinear Sci. 26(5), 1227–1291 (2016)MathSciNetCrossRefGoogle Scholar
  10. Kohn, R.V., Otto, F.: Upper bounds on coarsening rates. Commun. Math. Phys. 229(3), 375–395 (2002)MathSciNetCrossRefGoogle Scholar
  11. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80(4), 931–954 (1958)MathSciNetCrossRefGoogle Scholar
  12. van der Meer, R.M., van der Weele, J.P., Lohse, D.: Bifurcation diagram for compartmentalized granular gases. Phys. Rev. E Cover. Stat. Nonlinear Biol. Soft Matter Phys. 63(061304), 061304-1–061304-9 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations