Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 4, pp 1273–1299 | Cite as

\(\varGamma \)-Convergence of the Heitmann–Radin Sticky Disc Energy to the Crystalline Perimeter

  • L. De LucaEmail author
  • M. Novaga
  • M. Ponsiglione
Article

Abstract

We consider low-energy configurations for the Heitmann–Radin sticky discs functional, in the limit of diverging number of discs. More precisely, we renormalize the Heitmann–Radin potential by subtracting the minimal energy per particle, i.e. the so-called kissing number. For configurations whose energy scales like the perimeter, we prove a compactness result which shows the emergence of polycrystalline structures: The empirical measure converges to a set of finite perimeter, while a microscopic variable, representing the orientation of the underlying lattice, converges to a locally constant function. Whenever the limit configuration is a single crystal, i.e. it has constant orientation, we show that the \(\varGamma \)-limit is the anisotropic perimeter, corresponding to the Finsler metric determined by the orientation of the single crystal.

Keywords

Sticky discs Crystallization \(\varGamma \)-convergence Polycrystals 

Mathematics Subject Classification

74C20 82B24 49J45 

References

  1. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111(4), 291–322 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  3. Au Yeung, Y., Friesecke, G., Schmidt, B.: Minimizing atomic configurations of short range pair potentials in two dimensions: crystallization in the Wulff shape. Calc. Var. Partial Differ. Equ. 44(1–2), 81–100 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, p. 184. Springer, Berlin (1998)CrossRefGoogle Scholar
  6. Braides, A., Conti, S., Garroni, A.: Density of polyhedral partitions. Calc. Var. Partial Differ. Equ. 56(2), 28 (2017). art. 28MathSciNetCrossRefzbMATHGoogle Scholar
  7. Caroccia, M., Maggi, F.: A sharp quantitative version of Hales’ isoperimetric honeycomb theorem. J. Math. Pures Appl. 106(5), 935–956 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Davoli, E., Piovano, P., Stefanelli, U.: Sharp \(N^{3/4}\) law for the minimizers of the edge-isoperimetric problem on the triangular lattice. J. Nonlinear Sci. 27(2), 627–660 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. De Luca, L., Friesecke, G.: Classification of particle numbers with unique Heitmann–Radin minimizer. J. Stat. Phys. 167(6), 1586–1592 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. De Luca, L., Friesecke, G.: Crystallization in two dimensions and a discrete Gauss–Bonnet theorem. J. Nonlinear Sci. 28(1), 69–90 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Fanzon, S., Palombaro, M., Ponsiglione, M.: Derivation of linearised polycrystals from a 2D system of edge dislocations. Preprint (2018). arXiv:1805.04484
  12. Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 119(1–2), 125–136 (1991)MathSciNetzbMATHGoogle Scholar
  13. Hales, T.C.: The honeycomb conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Harborth, H.: Lösung zu Problem 664A. Elem. Math. 29, 14–15 (1974)Google Scholar
  15. Heitmann, R.C., Radin, C.: The ground state for sticky disks. J. Stat. Phys. 22(3), 281–287 (1980)MathSciNetCrossRefGoogle Scholar
  16. Lauteri, G., Luckhaus, S.: An energy estimate for dislocation configurations and the emergence of cosserat-type structures in metal plasticity. Preprint (2017). arXiv:1608.06155
  17. Radin, C.: The ground states for soft discs. J. Stat. Phys. 26(2), 365–373 (1981)CrossRefGoogle Scholar
  18. Read, W.T., Shockley, W.: Dislocation models of crystal grain boundaries. Phys. Rev. 78(3), 275–289 (1950)CrossRefzbMATHGoogle Scholar
  19. Schmidt, B.: Ground states of the 2D sticky disc model: fine properties and \(N^{3/4}\) law for the deviation from the asymptotic Wulff shape. J. Stat. Phys. 153(4), 727–738 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SISSATriesteItaly
  2. 2.Dipartimento di MatematicaUniversità di PisaPisaItaly
  3. 3.Dipartimento di Matematica “Guido Castelnuovo”Sapienza Università di RomaRomeItaly

Personalised recommendations