Model Equations and Traveling Wave Solutions for Shallow-Water Waves with the Coriolis Effect

  • Guilong Gui
  • Yue Liu
  • Ting Luo


In the present study, we start by formally deriving the simplified phenomenological models of long-crested shallow-water waves propagating in the equatorial ocean regions with the Coriolis effect due to the Earth’s rotation. These new model equations are analogous to the Green–Naghdi equations, the first-order approximations of the KdV-, or BBM type, respectively. We then justify rigorously that in the long-wave limit, unidirectional solutions of a class of KdV- or BBM type are well approximated by the solutions of the Camassa–Holm equation in a rotating setting. The modeling and analysis of those mathematical models then illustrate that the Coriolis forcing in the propagation of shallow-water waves can not be neglected. Indeed, the CH-approximation with the Coriolis effect captures stronger nonlinear effects than the nonlinear dispersive rotational KdV type. Furthermore, we demonstrate nonexistence of the Camassa–Holm-type peaked solution and classify various localized traveling wave solutions to the Camassa–Holm equation with the Coriolis effect depending on the range of the rotation parameter.


Coriolis effect Rotation-Camassa–Holm equation Rotation-KdV equation Rotation-Green–Naghdi equations Solitary waves 

Mathematics Subject Classification

35Q53 35B30 35G25 



The authors would like to thank the referees for constructive suggestions and comments. The work of Gui is partially supported by the NSF-China under Grant Numbers 11571279 and 11331005, and the Foundation FANEDD-201315. The work of Liu is supported in part by the Simons Foundation Grant-499875.


  1. Alazman, A.A., Albert, J.P., Bona, J.L., Chen, M., Wu, J.: Comparisons between the BBM equation and a Boussinesq system. Adv. Differ. Equ. 11, 121–166 (2006)MathSciNetzbMATHGoogle Scholar
  2. Alvarez-Samaniego, B., Lannes, D.: Large time existence for 3D water-waves and asymptotics. Invent. Math. 171, 485–541 (2008)MathSciNetCrossRefGoogle Scholar
  3. Benjamin, M.: Long wave approximation for water waves under a Coriolis forcing and the Ostrovsky equation, arXiv:1603.08782v1 [math.AP] (2016)
  4. Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn, pp. 40–41. Springer, Berlin (2007)Google Scholar
  5. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRefGoogle Scholar
  6. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water wave equation. Adv. Appl. Mech. 31, 1–33 (1994)CrossRefGoogle Scholar
  7. Chen, M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green–Naghdi equations with the Coriolis effect, arXiv:1801.04666v1 [math.AP] (2018)
  8. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)MathSciNetCrossRefGoogle Scholar
  9. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)CrossRefGoogle Scholar
  10. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)MathSciNetCrossRefGoogle Scholar
  11. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)MathSciNetCrossRefGoogle Scholar
  12. Dellar, P., Salmon, R.: Shallow water equations with a coplete Coriolis force and topography. Phys. Fluids 17, 106601 (2005)MathSciNetCrossRefGoogle Scholar
  13. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalization of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)MathSciNetCrossRefGoogle Scholar
  14. Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Progr. Theoret. Phys. 68, 1082–1104 (1982)MathSciNetCrossRefGoogle Scholar
  15. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4, 47–66 (1981/1982)MathSciNetCrossRefGoogle Scholar
  16. Gallagher, I., Saint-Raymond, L.: On the influence of the Earth’s rotation on geophysical flows. Handb. Math. Fluid Mech. 4, 201–329 (2007)Google Scholar
  17. Green, A., Naghdi, P.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–246 (1976)CrossRefGoogle Scholar
  18. Grimshaw, A.: Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math. 73, 1–33 (1985)MathSciNetCrossRefGoogle Scholar
  19. Grimshaw, A., Ostrovsky, L., Shrira, V.I., Stepanyant, A.: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys. 19, 289–338 (1998)CrossRefGoogle Scholar
  20. Gui, G., Liu, Y., Olver, P.J., Qu, C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)MathSciNetCrossRefGoogle Scholar
  21. Gui, G., Liu, Y., Sun, J.: A nonlocal shallow-water model arising from the full water waves with the Coriolis effect, arXiv:1801.04665v1 [math.AP] (2018)
  22. Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)MathSciNetGoogle Scholar
  23. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)MathSciNetCrossRefGoogle Scholar
  24. Karpman, V.I.: Nonlinear Wave in Dispersive Media. Pergamon Press, Oxford (1975)Google Scholar
  25. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefGoogle Scholar
  26. Lenells, J.: Traveling wave solutions of the Camassa–Holm equation. J. Differ. Equ. 217, 393–430 (2005)MathSciNetCrossRefGoogle Scholar
  27. Lenells, J.: Classification of all travelling-wave solutions for some nonlinear dispersive equations. Phil. Trans. R. Soc. A 365, 2291–2298 (2007)MathSciNetCrossRefGoogle Scholar
  28. Li, Y.A.: A shallow-water approximation to the full water wave problem. Commun. Pure Appl. Math. 59, 1225–1285 (2006)MathSciNetCrossRefGoogle Scholar
  29. Moser, J.: A rapidly convergent iteration method and nonlinear partial differential equations, I. Ann. Sc. Norm. Sup. Pisa 20, 265–315 (1966)zbMATHGoogle Scholar
  30. Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181–191 (1978)Google Scholar
  31. Serre, F.: Contribution á l’ étude des écoulements permanents et variables dans les canaux. Houille Blanche 8, 374–388 (1953)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsNorthwest UniversityXi’anPeople’s Republic of China
  2. 2.Chongqing UniversityChongqingPeople’s Republic of China
  3. 3.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Institute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China

Personalised recommendations