Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 3, pp 871–896 | Cite as

Population Games and Discrete Optimal Transport

  • Shui-Nee Chow
  • Wuchen LiEmail author
  • Jun Lu
  • Haomin Zhou
Article

Abstract

We propose an evolutionary dynamics for population games with discrete strategy sets, inspired by optimal transport theory and mean field games. The proposed dynamics is the Smith dynamics with strategy graph structure, in which payoffs are modified by logarithmic terms. The dynamics can be described as a Fokker–Planck equation on a discrete strategy set. For potential games, the dynamics is a gradient flow system under a Riemannian metric from optimal transport theory. The stability of the dynamics is studied through optimal transport metric tensor, free energy and Fisher information.

Keywords

Evolutionary game theory Optimal transport Mean field games Fokker–Planck equations 

Notes

Acknowledgements

This paper is based on Wuchen Li’s thesis Li (2016).

References

  1. Akin, E.: The Geometry of Population Genetics, vol. 280. Springer, Berlin (1979)CrossRefzbMATHGoogle Scholar
  2. Allen, B., Nowak, M.A.: Games on graphs. EMS Surv. Math. Sci. 1(1), 113–151 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Blanchet, A., Carlier, G.: Optimal transport and Cournot-Nash equilibria. arXiv preprint arXiv:1206.6571 (2012)
  4. Blanchet, A., Carlier, G.: From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372(2028), 20130398 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Cardaliaguet, P.: Notes on mean field games, Technical report (2010)Google Scholar
  6. Carrillo, J.A., McCann, R.J., Villani, C.: Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Revista Matematica Iberoamericana 3(19), 971–1018 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chow, S.-N., Huang, W., Li, Y., Zhou, H.: Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203(3), 969–1008 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Chow, S.-N., Li, W., Zhou, H.: Entropy dissipation of Fokker–Planck equations on graphs. arXiv:1701.04841 (2017a)
  9. Chow, S.-N., Li, W., Lu, J., Zhou, H.: Game theory and discrete optimal transport. arXiv:1703.08442 (2017b)
  10. Coucheney, P., Gaujal, B., Mertikopoulos, P.: Penalty-regulated dynamics and robust learning procedures in games. Math. Oper. Res. 40(3), 513–796 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Degond, P., Liu, J.-G., Ringhofer, C.: Large-scale dynamics of mean-field games driven by local Nash equilibria. J. Nonlinear Sci. 24(1), 93–115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Frieden, B.R.: Science from Fisher Information: A Unification. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  14. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  15. Hofbauer, J., Sigmund, K.: The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  16. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40(4), 479–519 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hofbauer, J., Sandholm, W.H.: On the global convergence of stochastic fictitious play. Econometrica 70, 2265–2294 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Hofbauer, J., Sandholm, W.H.: Evolution in games with randomly disturbed payoffs. J. Econ. Theory 132, 47–69 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Huang, Y., Hao, Y., Wang, M., Zhou, W., Wu, Z.: Optimality and stability of symmetric evolutionary games with applications in genetic selection. Math. Biosci. Eng. 12(3), 503–523 (2015)Google Scholar
  20. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Li, W.: A study of stochastic differential equations and Fokker–Planck equations with applications. Ph.D thesis (2016)Google Scholar
  22. Li, W.: Geometry of probability simplex via optimal transport. arXiv:1803.06360 (2018)
  23. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433(7023), 312–316 (2005)CrossRefGoogle Scholar
  24. David, S.L., Collins, E.J.: Individual Q-learning in normal form games. SIAM J. Control Optim. 44(2), 495–514 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Matsui, A.: Best response dynamics and socially stable strategies. J. Econ. Theory 57(2), 343–362 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Mertikopoulos, P., Sandholm, W.H.: Riemannian game dynamics. arXiv preprint arXiv:1603.09173 (2016)
  28. Mertikopoulos, P., Sandholm, W.H.: Learning in games via reinforcement and regularization. Math. Oper. Res. 41(4), 1297–1324 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Nowak, M.A.: Evolutionary Dynamics. Harvard University Press, Harvard (2006)CrossRefzbMATHGoogle Scholar
  32. Sandholm, W.H.: Population Games and Evolutionary Dynamics. MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  33. Sandholm, W.H.: Evolutionary Game Theory. In: Meyers, R. (ed) Encyclopedia of Complexity and Systems Science, pp. 3176–3205. Springer, New York, NY (2012a)Google Scholar
  34. Sandholm, W.H.: Decompositions and potentials for normal form games. Games Econ. Behav. 70(2), 446–456 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Sandholm, W.H.: Local stability of strict equilibria under evolutionary game dynamics. J. Dyn. Games 5(1), 27–50 (2012b)Google Scholar
  36. Shah, D., Shin, J.: Dynamics in congestion games. In: ACM SIGMETRICS Performance Evaluation Review, vol. 38, pp. 107–118. ACM (2010)Google Scholar
  37. Shahshahani, S.: A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc. 211 (1979).  https://doi.org/10.1090/memo/0211
  38. Sigmund, K., Nowak, M.A.: Evolutionary game theory. Curr. Biol. 9(14), R503–R505 (1999)CrossRefGoogle Scholar
  39. Michael, J.S.: The stability of a dynamic model of traffic assignment-an application of a method of Lyapunov. Transp. Sci. 18(3), 245–252 (1984)MathSciNetCrossRefGoogle Scholar
  40. Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446(4), 97–216 (2007)MathSciNetCrossRefGoogle Scholar
  41. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  42. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2008)zbMATHGoogle Scholar
  43. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior (60 Anniversary Commemorative Edition). Princeton University Press, Princeton (2007)CrossRefGoogle Scholar
  44. Wu, A., Liao, D., Tlsty, T.D., Sturm, J.C., Austin, R.H.: Game theory in the death galaxy: interaction of cancer and stromal cells in tumour microenvironment. Interface Focus 4(4), 20140028 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.University of California Los AngelesLos AngelesUSA

Personalised recommendations