Advertisement

The Kuramoto Model on Power Law Graphs: Synchronization and Contrast States

  • Georgi S. MedvedevEmail author
  • Xuezhi Tang
Article
  • 65 Downloads

Abstract

The relation between the structural properties of the network and its dynamics is a central question in the analysis of dynamical networks. It is especially relevant for complex networks found in real-world applications. This work presents mathematically rigorous analysis of coupled dynamical systems on power law graphs. Specifically, we study large systems of coupled Kuramoto phase oscillators. In the limit as the size of the network tends to infinity, we derive analytically tractable mean field partial differential equation for the probability density function describing the state of the coupled system. The mean field limit is used to establish an explicit formula for the synchronization threshold for coupled phase oscillators with randomly distributed intrinsic frequencies. Furthermore, we study stable spatial patterns generated by the Kuramoto model with repulsive coupling. In particular, we identify a family of stable steady-state solutions having multiple regions with distinct statistical properties. We call these solutions contrast states. Like chimera states, contrast states exhibit coexisting regions of highly localized (coherent) behavior and highly irregular (incoherent) distribution of phases. We provide a detailed mathematical analysis of contrast states in the KM using the Ott–Antonsen ansatz. The analysis of synchronization and contrast states provides new insights into the role of power law connectivity in shaping dynamics of coupled dynamical systems. In particular, we show that despite sparse connectivity, power law networks possess remarkable synchronizability: the synchronization threshold can be made arbitrarily low by varying the parameter of the power law distribution.

Keywords

Coupled oscillators Synchronization Chimera state Scale free graph Graph limit Mean field limit 

Notes

Acknowledgements

This work was supported in part by the NSF DMS grants 1412066 and 1715161 (to GM).

References

  1. Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurc. Chaos Appl. Sci. Eng. 16(1), 21–37 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Barbašin, E.A., Krasovskiĭ, N.N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.) 86, 453–456 (1952)MathSciNetGoogle Scholar
  4. Borgs, C., Chayes, J., Lovász, L., Sós, V., Vesztergombi, K.: Limits of randomly grown graph sequences. Eur. J. Combin. 32(7), 985–999 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Borgs, C., Chayes, J.T., Cohn, H., Zhao, Y.: An \(L^p\) theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions. (2014). arXiv:1401.2906
  6. Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Theory Dyn. Syst. 35(3), 762–834 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chiba, H., Medvedev, G.S.: The mean field analysis for the Kuramoto model on graphs I. The mean field equation and transition point formulas. (2016). arXiv:1612.06493
  8. Chiba, H., Medvedev, G.S.: The mean field analysis of the Kuramoto model on graphs II. Asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. (2017). arXiv:1709.08305
  9. Chiba, H., Nishikawa, I.: Center manifold reduction for large populations of globally coupled phase oscillators. Chaos 21(4), 043103–043110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Chiba, H., Medvedev, G.S., Mizuhara, M.S.: Bifurcations in the Kuramoto model on graphs. Chaos. 28, 073109 (2018). (in press)Google Scholar
  11. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99(25), 15879–15882 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002). Revised reprint of the 1989 originalCrossRefzbMATHGoogle Scholar
  13. Golse, F.: On the dynamics of large particle systems in the mean field limit. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Lect. Notes Appl. Math. Mech., vol. 3, pp. 1–144. Springer, Cham (2016)Google Scholar
  14. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York (1990). Revised and corrected reprint of the 1983 originalzbMATHGoogle Scholar
  15. Hartman, P.: Ordinary Differential Equations. S. M. Hartman, Baltimore (1973). (Corrected reprint)zbMATHGoogle Scholar
  16. Hoppensteadt, F.C., Izhikevich, E.M.: Weakly Connected Neural Networks. Applied Mathematical Sciences, vol. 126. Springer, New York (1997)zbMATHGoogle Scholar
  17. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  18. Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49(2), 1333–1355 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Kaliuzhnyi-Verbovetskyi, D., Medvedev, G.S.: The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit. SIAM J. Math. Anal. 50(3), 2441–2465 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Krasovskiĭ, N.N.: Nekotorye zadachi teorii ustoichivosti dvizheniya. Gosudarstv. Izdat. Fiz.-Mat. Lit, Moscow (1959)Google Scholar
  21. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975). Lecture Notes in Phys., vol. 39, pp. 420–422. Springer, Berlin (1975)Google Scholar
  22. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002)Google Scholar
  23. Laing, C.R.: Chimera states in heterogeneous networks. Chaos 19(1), 013113–013118 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34(7), 523–535 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. LaSalle, J.: Some extensions of Liapunov’s second method. IRE Trans. Circuit Theory 7(4), 520–527 (1960)MathSciNetCrossRefGoogle Scholar
  26. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory Ser. B 96(6), 933–957 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Medvedev, G.S.: Stochastic stability of continuous time consensus protocols. SIAM J. Control Optim. 50(4), 1859–1885 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Medvedev, G.S.: The nonlinear heat equation on W-random graphs. Arch. Ration. Mech. Anal. 212(3), 781–803 (2014a)Google Scholar
  29. Medvedev, G.S.: Small-world networks of Kuramoto oscillators. Phys. D 266, 13–22 (2014b)Google Scholar
  30. Medvedev, G.S.: The continuum limit for the Kuramoto model on sparse random graphs. (2018). arXiv:1802.03787
  31. Medvedev, G.S., Tang, X.: Stability of twisted states in the Kuramoto model on Cayley and random graphs. J. Nonlinear Sci. 25(6), 1169–1208 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Medvedev, G.S., Douglas Wright, J.: Stability of twisted states in the continuum Kuramoto model. SIAM J. Appl. Dyn. Syst. 16(1), 188–203 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Neunzert, H.: Mathematical investigations on particle-in-cell methods Fluid Dyn. Trans. 9, 229–254 (1978)Google Scholar
  35. Omelchenko, O.E.: Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators. Nonlinearity 26(9), 2469 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol. 4. Springer, Cham (2016). A tutorialzbMATHGoogle Scholar
  38. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D 143(1–4), 1–20 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63(3–4), 613–635 (1991)MathSciNetCrossRefGoogle Scholar
  40. Wiley, D.A., Strogatz, S.H., Girvan, M.: The size of the sync basin. Chaos 16(1), 015103–015108 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA
  2. 2.Wells Fargo SecuritiesCharlotteUSA

Personalised recommendations