Journal of Nonlinear Science

, Volume 29, Issue 1, pp 229–253 | Cite as

When Rank-One Convexity Meets Polyconvexity: An Algebraic Approach to Elastic Binodal

  • Yury GrabovskyEmail author
  • Lev Truskinovsky


In the variational problems involving non-convex integral functionals, finding the binodal, the boundary of validity of the quasiconvexity of the energy density, is of central importance. We develop a systematic methodology for identifying a part of the binodal corresponding to simple laminates by showing that in this case the supporting null-Lagrangians, establishing polyconvexity, can be constructed explicitly. We present a nontrivial example from nonlinear elasticity where this approach allows one to obtain the entire quasiconvex envelope.


Quasiconvexity Polyconvexity Rank-one convexity Jump set Elastic stability Binodal 

Mathematics Subject Classification

74A50 74G65 49K40 49S05 



The authors wish to thank Bob Kohn for discussions and suggestions, while handling the review process. This work was conducted during the stay of YG at ESPCI Paris supported by Chair Joliot. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1714287. LT was also supported by the French Government under the Grant No. ANR-10-IDEX-0001-02 PSL.


  1. Abeyaratne, R., Jiang, G.-H.: Dilatationally nonlinear elastic materials–I. Some theory. Int. J. Solids Struct. 25(10), 1201–1219 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Abeyaratne, R., Jiang, G.-H.: Dilatationally nonlinear elastic materials–II. An example illustrating stress concentration reduction. Int. J. Solids Struct. 25(10), 1221–1233 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Agostiniani, V., Blass, T., Koumatos, K.: From nonlinear to linearized elasticity via \(\Gamma \)-convergence: the case of multiwell energies satisfying weak coercivity conditions. Math. Models Methods Appl. Sci. 25(1), 1–38 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Alicandro, R., Dal Maso, G., Lazzaroni, G., Palombaro, M.: Linearisation of multiwell energies (preprint, 2017)
  5. Antimonov, M.A., Cherkaev, A., Freidin, A.B.: Phase transformations surfaces and exact energy lower bounds. Int. J. Eng. Sci. 90, 153–182 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Ball, J.M., James, R.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Ball, J.M., James, R.: Proposed experimental tests of a theory of fine microstructure and two-well problem. Philos. Trans. R. Soc. Lond. 338A, 389–450 (1992)zbMATHGoogle Scholar
  8. Ball, J.M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11(4), 333–359 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Budiansky, B., Hutchinson, J.W., Lambropoulos, J.C.: Continuum theory of dilatant transformation toughening in ceramics. Int. J. Solids Struct. 19(4), 337–355 (1983)CrossRefzbMATHGoogle Scholar
  10. Chenchiah, I., Bhattacharya, K.: The relaxation of two-well energies with possibly unequal moduli. Arch. Ration. Mech. Anal. 187(3), 409–479 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York (2008)zbMATHGoogle Scholar
  13. Dolzmann, G.: Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36(5), 1621–1635 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Edelen, D.G.B.: The null set of the Euler–Lagrange operator. Arch. Ration. Mech. Anal. 11(1), 117–121 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math. 82, 21–30 (1877)MathSciNetGoogle Scholar
  16. Eremeev, V.A., Freidin, A.B., Sharipova, L.L.: On the stability of equilibrium of two-phase elastic bodies. Prikl. Mat. Mekh. 71(1), 66–92 (2007)MathSciNetzbMATHGoogle Scholar
  17. Ericksen, J.L.: Nilpotent energies in liquid crystal theory. Arch. Ration. Mech. Anal. 10, 189–196 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Ericksen, J.L.: Equilibrium of bars. J. Elast. 5(3–4), 191–201 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Eshelby, J.D.: Energy relations and energy momentum tensor in continuum mechanics. In: Kanninen, M.F., Adler, W.F., Rosenfeld, A.R., Jaffee, R.I. (eds.) Inelastic Behavior of Solids, pp. 77–114. McGraw-Hill, New York (1970)Google Scholar
  20. Freidin, A.B., Chiskis, A.M.: Zones of phase transitions in non-linear elastic isotropic materials. Part 1. Basic relations. Izv Akad Nauk MTT (Mech. Solids) 4, 91–109 (1994a) (In Russian)Google Scholar
  21. Freidin, A.B., Chiskis, A.M.: Zones of phase transitions in non-linear elastic isotropic materials. Part 2. Incompressible materials with a potentials solely dependent on one of the invariants of the strain tensor. Izv. Akad. Nauk MTT (Mech. Solids) 5, 49–61 (1994b) (In Russian)Google Scholar
  22. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963)zbMATHGoogle Scholar
  23. Giaquinta, M., Hildebrandt, S.: Calculus of Variations. II The Hamiltonian Formalism, Volume 311 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1996)Google Scholar
  24. Grabovsky, Y.: Bounds and extremal microstructures for two-component composites: a unified treatment based on the translation method. Proc. R. Soc. Lond. Ser. A. 452(1947), 945–952 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Grabovsky, Y., Truskinovsky, L.: Roughening instability of broken extremals. Arch. Ration. Mech. Anal. 200(1), 183–202 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Grabovsky, Y., Truskinovsky, L.: Marginal material stability. J. Nonlinear Sci. 23(5), 891–969 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Grabovsky, Y., Truskinovsky, L.: Normality condition in elasticity. J. Nonlinear Sci. 24(6), 1125–1146 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Grabovsky, Y., Truskinovsky, L.: Legendre–Hadamard conditions for two-phase configurations. J. Elast. 123(2), 225–243 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Grinfeld, M.A.: On conditions of thermodynamic phase equilibrium in non-linearly elastic body. Dokl. Akad. Nauk SSSR 251(4), 824–827 (1980a) (in Russian)Google Scholar
  30. Grinfeld, M.A.: On the thermodynamic stability of material. Dokl. Akad. Nauk SSSR 253(6), 1349–1353 (1980b)MathSciNetGoogle Scholar
  31. Gurtin, M.E.: Two-phase deformations of elastic solids. Arch. Ration. Mech. Anal. 84(1), 1–29 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Hadamard, J.: Leçons sur la propagation des ondes et les équations de l’hydrodynamique. Hermann, Paris (1903)zbMATHGoogle Scholar
  33. James, R.D.: Finite deformation by mechanical twinning. Arch. Ration. Mech. Anal. 77(2), 143–176 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  34. John, F.: Plane elastic waves of finite amplitude. Hadamard materials and harmonic materials. Commun. Pure Appl. Math. 19(3), 309–341 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Kaganova, I.M., Roytburd, A.L.: Equilibrium between elastically-interacting phases. Sov. Phys. JETP 67(6), 1173–1183 (1988)Google Scholar
  36. Khachaturyan, A.G.: Theory of Structural Transformation in Solids. Wiley, New York (1983)Google Scholar
  37. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3, 193–236 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Kohn, R.V., Strang, G.: Structural design, optimization, homogenization, and relaxation of variational problems. In: Burridge, R., Papanicolaou, G., Childress, S. (eds.) Macroscopic Properties of Disordered Media. Lecture Notes Physics, vol. 154, pp. 131–147. Springer, Berlin (1982)CrossRefGoogle Scholar
  39. Kristensen, J.: On the non-locality of quasiconvexity. Ann. Inst. Henri Poincare (C) Non Linear Anal. 16(1), 1–13 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  40. Kristensen, J.: On conditions for polyconvexity. Proc. Am. Math. Soc. 128(6), 1793–1797 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Kucher, V.A., Osmolovskii, V.G.: Computation of the second variation of the energy functional of a two-phase medium. J. Math. Sci. (N. Y.) 106(3), 2929–2951 (2001) (Function theory and phase transitions)Google Scholar
  42. Lurie, K.A.: The Mayer–Bolza problem for multiple integrals and optimization of the behavior of systems with distributed parameters. Prikl. Mat. Mek. (PMM) 27(5), 842–853 (1963) (In Russian)Google Scholar
  43. Lurie, K.A., Cherkaev, A.V., Fedorov, A.V.: Regularization of optimal design problems for bars and plates. I, II. J. Optim. Theory Appl. 37(4), 499–522, 523–543 (1982) (The first and the second parts were separately published as Lurie et al. (1980)a, b)Google Scholar
  44. Lurie, K.A., Fedorov, A.V., Cherkaev, A.V.: On the existence of solutions of certain optimal design problems for bars and plates. Report 668, Ioffe Physico-technical Institute, Academy of Science, USSR, Leningrad, USSR (1980a). In Russian. English translation in Lurie et al. (1982), part IIGoogle Scholar
  45. Lurie, K.A., Fedorov, A.V., Cherkaev, A.V.: Relaxation of optimal design problems for bars and plates and eliminating of contradictions in the necessary conditions of optimality. Report 667, Ioffe Physico-technical Institute, Academy of Science, USSR, Leningrad, USSR (1980b). In Russian. English translation in Lurie et al. (1982), part IGoogle Scholar
  46. Meyers, N.G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119, 125–149 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Milton, G.W.: The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  48. Morrey Jr., C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  49. Oberman, M., Ruan, Y.: A partial differential equation for the rank one convex envelope. Arch. Ration. Mech. Anal. 224(3), 955–984 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  50. Osmolovskii, N.P.: Quadratic extremality conditions for broken extremals in the general problem of the calculus of variations. J. Math. Sci. 123(3), 3987–4122 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Schmidt, B.: Linear \(\gamma \)-limits of multiwell energies in nonlinear elasticity theory. Contin. Mech. Thermodyn. 20(6), 375–396 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  52. Schröder, J., Neff, P.: Poly-, quasi-and rank-one convexity in applied mechanics, vol. 516. Springer Science & Business Media, Berlin (2010)CrossRefGoogle Scholar
  53. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)zbMATHGoogle Scholar
  54. Šilhavý, M.: Maxwell’s relation for isotropic bodies. In: Mechanics of Material Forces, volume 11 of Advances in Applied Mathematics, pp. 281–288. Springer, New York (2005)Google Scholar
  55. Tartar, L.: Estimation de coefficients homogénéisés. In: Computing methods in applied sciences and engineering (Proceedings of Third International Symposium, Versailles, 1977), I, volume 704 of Lecture Notes in Mathematics, pp. 364–373. Springer, Berlin (1979)Google Scholar
  56. Tartar, L.: Estimation fines des coefficients homogénéisés. In: Kree, P. (ed.) E. De Giorgi colloquium (Paris, 1983), pp. 168–187. Pitman Publishing Ltd, London (1985)Google Scholar
  57. Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Ration. Mech. Anal. 1, 125–300 (1952)MathSciNetzbMATHGoogle Scholar
  58. Young, L.C.: Lectures on the calculus of variations and optimal control theory. W. B. Saunders Co., Philadelphia (1969) (Foreword by Wendell H. Fleming)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA
  2. 2.PMMHESPCIParisFrance

Personalised recommendations