Journal of Nonlinear Science

, Volume 29, Issue 1, pp 207–213 | Cite as

Onsager’s Conjecture on the Energy Conservation for Solutions of Euler Equations in Bounded Domains

  • Quoc-Hung Nguyen
  • Phuoc-Tai NguyenEmail author


The Onsager’s conjecture has two parts: conservation of energy, if the exponent is larger than 1 / 3, and the possibility of dissipative Euler solutions, if the exponent is less than or equal to 1 / 3. The paper proves half of the conjecture, the conservation part, in bounded domains.


Onsager’s conjecture Energy conservation Euler equation 

Mathematics Subject Classification

35Q31 76B03 



The authors are grateful to Emil Wiedemann for helpful comments. We also would like to thank the anonymous referee for constructive comments which helped to improve the note remarkably.


  1. Bardos, C., Titi, E.: Onsager’s conjecture for the incompressible Euler equations in bounded domains. Arch. Ration. Mech. Anal. 228(1), 197–207 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bardos, C., Titi, E., Wiedemann, E.: Onsager’s Conjecture with Physical Boundaries and an Application to the Viscosity Limit, preprint arXiv:1803.04939, (2018)
  3. Buckmaster, T., De Lellis, C., Székelyhidi Jr. L., Vicol, V.: Onsager’s conjecture for admissible weak solutions, arXiv:1701.08678 (2017)
  4. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182(1), 127–172 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Constantin, P., W. E, Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)Google Scholar
  6. De Lellis, C., Székelyhidi Jr., L.: The h-principle and the equations of fluid dynamics. B. Am. Math. Soc. 49, 347–375 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. De Lellis, C., Székelyhidi Jr., L.: Dissipative continuous Euler flows. Invent. Math. 193(2), 377–407 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. (JEMS) 16(7), 1467–1505 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Drivas, T.D., Eyink, G.L.: An Onsager singularity theorem for turbulent solutions of compressible Euler equations. Commun. Math. Phys. 359, 1–31 (2017)MathSciNetzbMATHGoogle Scholar
  10. Drivas, T.D., Nguyen, H. Q.: Onsager’s conjecture and anomalous dissipation on domains with boundary, preprint arXiv:1803.05416v2 (2018)
  11. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier Anal. Local Energy Trans. Phys. D 78, 222–240 (1994)zbMATHGoogle Scholar
  12. Isett, P.: A proof of Onsager’s conjecture, preprint arXiv:1608.08301, (2016)
  13. Onsager, L.: Statistical Hydrodynamics. Nuovo Cimento (Supplemento) 6, 279 (1949)MathSciNetCrossRefGoogle Scholar
  14. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Faculty of Science, Department of Mathematics and StatisticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations