Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 1, pp 163–181 | Cite as

Geometric Stability Switch Criteria in HIV-1 Infection Delay Model

  • C. MonicaEmail author
  • M. Pitchaimani
Article
  • 106 Downloads

Abstract

In this article, a new method for analyzing the stability of a steady state of a delay differential equation is introduced. We determine whether or not varying the delay length can change the stability characteristics of a steady state, treating the length of the time delay as a bifurcation parameter.

Keywords

Bifurcation Delay differential equation HIV-1 Stability switch 

Mathematics Subject Classification

92D25 34C23 34D23 37B25 

References

  1. Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976 (1997)CrossRefGoogle Scholar
  2. Bos, J.M., Postma, M.J.: The economics of HIV vaccines. Pharmacoeconomics 19, 937–946 (2001)CrossRefGoogle Scholar
  3. Brauer, F., Castillo-Chavez, C.: Mathematical Model in Population Biology and Epidemiology. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  4. Cole, K.S.: Electric conductance of biological systems. In: Proceedings of Cold Spring HarborSymposium Quantitative Biology. Cold Spring Harbor, New York, pp. 107–116 (1993)Google Scholar
  5. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4+ T-cells. Math. Comput. Model. 50(3–4), 386–392 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dixit, N.M., Perelson, A.S.: Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J. Theor. Biol. 226, 95–109 (2004)MathSciNetCrossRefGoogle Scholar
  8. El’sgol’ts, L.E., Norkin, S.B.: An Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Academic Press, New York (1973)zbMATHGoogle Scholar
  9. Herz, V., Bonhoeffer, S., Anderson, R., May, R., Nowak, M.: Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay. Proc. Natl. Acad. Sci. 93, 7247–7251 (1996)CrossRefGoogle Scholar
  10. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)CrossRefGoogle Scholar
  11. Insperger, T., Stepan, G.: Stability chart for the delayed Mathieu equation. Proc. R. Soc. Lond. 458, 1989–1998 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Joint United Nations Programme on HIV / AIDS, AIDS Epidemic Updates (2004)Google Scholar
  13. Joint United Nations Programme on HIV: / AIDS. AIDS vaccines research in Asia: needs and opportunities, AIDS 13, 1–13 (1999)Google Scholar
  14. Kirschner, D.: Using mathematics to understand HIV immune dynamics. Notices Am. Math. Soc. 43, 191–202 (1996)MathSciNetzbMATHGoogle Scholar
  15. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  16. Lee, M.S., Hsu, C.S.: On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM J. Control 7, 242–259 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  17. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University, Cambridge (1989)zbMATHGoogle Scholar
  18. McLean, A., Frost, S.: Ziduvidine and HIV: mathematical models of within-host population dynamics. Rev. Med. Virol. 5, 141–147 (1995)CrossRefGoogle Scholar
  19. McLean, A.R., Rosado, M.M., Agenes, F., Vasconcellos, R., Freitas, A.A.: Resource competition as a mechanism for B cell homeostasis. Proc. Natl. Acad. Sci. USA 94, 5792–5797 (1997)CrossRefGoogle Scholar
  20. Monica, C., Pitchaimani, M.: Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular delays. Nonlinear Anal. RWA. 27, 55–69 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Nowak, R.M., Anderson, R.M., Boerlijst, M.C., Bonhoeffer, S., May, R.M., McMichael, A.J.: HIV-1 evolution and disease progression. Science 274, 1008–1010 (1996)CrossRefGoogle Scholar
  22. Nowak, M.A., Bonhoeffer, S., Shaw, G.M., May, R.M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217 (1997)CrossRefGoogle Scholar
  23. Nowak, M.A., May, R.M.: Virus Dynamics. Oxford University Press, UK (2000)zbMATHGoogle Scholar
  24. Perelson, A.S., Kirschner, D., De Boer, R.: Dynamics of HIV infection of CD4 T cells. Math. Biosci. 114, 81–125 (1993)CrossRefzbMATHGoogle Scholar
  25. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life span, and viral generation time. Science 271, 1582–1586 (1996)CrossRefGoogle Scholar
  27. Pitchaimani, M., Monica, C.: Global stability analysis of HIV-1 infection model with three time delays. J. Appl. Math. Comput. 48, 293–319 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Pitchaimani, M., Monica, C., Divya, M.: Stability analysis for HIV infection delay model with protease inhibitor. Biosystems 114, 118–124 (2013)CrossRefGoogle Scholar
  29. Pitchaimani, M., Monica, C.: Stability analysis for HIV-1 infection dynamics using the matrix lambert \(W\) function. Proc. IJMS 3–4(2), 423–432 (2012)Google Scholar
  30. Song, X.Y., Cheng, S.H.: A delay differential equation model of HIV infection of CD4\(^+\) \(T\)-cells. J. Korean Math. Soc. 42(5), 1071–1086 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Song, F., Wang, X., Song, X.: Stability properties of a delayed viral infection model with lytic immune response. J. Appl. Math. Inform. 29, 1117–1127 (2011)MathSciNetzbMATHGoogle Scholar
  32. Srivastava, P.K., Banerjee, M., Chandra, P.: Modeling the drug therapy for HIV infection. J. Biol. Syst. 17, 213–223 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Stepan, G.: Great delay in a predator-prey model. Nonlinear Anal. TMA 10, 913–929 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Stepan, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman (1989)Google Scholar
  35. Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., Shaw, G.M.: Viral dynamics in human immunodeficiency-virus type-1 infection. Nature 373, 117–122 (1995)CrossRefGoogle Scholar
  36. Xu, Q., Shi, M., Wang, Z.: Stability and delay sensitivity of neutral fractional-delay systems. Chaos 8(26), 084301 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Zhang, L., Stepan, G.: Exact stability chart of an elastic beam subjected to delayed feedback. J. Sound Vib. 367, 219–232 (2016)CrossRefGoogle Scholar
  38. Zhou, X., Song, X., Shi, X.: A differential equation model of HIV infection of CD\(4^+ T\)-cells with cure rate. J. Math. Anal. Appl. 342, 1342–1355 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Zhou, X., Song, X., Shi, X.: Analysis of stability and Hopf bifurcation for an HIV infection model with time delay. Appl. Math. Comput. 199, 23–38 (2008)MathSciNetzbMATHGoogle Scholar
  40. Zhuang, K., Zhu, H.: Stability and bifurcation analysis for an improved HIV model with time delay and cure rate. WSEAS Trans. Math. 12(8), 860–869 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vellore Institute of TechnologyVelloreIndia
  2. 2.RIAS in MathematicsUniversity of MadrasChennaiIndia

Personalised recommendations