Advertisement

Journal of Nonlinear Science

, Volume 29, Issue 1, pp 3–27 | Cite as

The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

  • Chunxia Li
  • Shi-Hao LiEmail author
Article

Abstract

This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the \(\tau \)-function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

Keywords

Matrix models Cauchy biorthogonal polynomials C-Toda lattice CKP hierarchy \(\tau \)-Function theory 

Mathematics Subject Classification

37K10 15A15 42C05 35C15 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11271266, 11705284 and 11701550) and Beijing Natural Science Foundation (Grant No. 1162003). The authors would like to thank the referee for valuable suggestions and bringing the article (Bertola et al. 2006) into our horizons, which is of great help for further study. Dr. C. X. Li would like to thank for the hospitality of School of Mathematics and Science during her visit to Fudan University. S. H. Li would like to thank Dr. X. K. Chang and Mr. B. Wang for helpful discussions and thank Prof. X. B. Hu for his attentive guidance.

References

  1. Adler, M., Horozov, E., van Moerbeke, P.: The Pfaff lattice and skew-orthogonal polynomials. Int. Math. Res. Not. 11, 569–588 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Adler, M., Shiota, T., van Moerbeke, P.: Random matrices, vertex operators and the Virasoro algebra. Phys. Lett. A 208, 67–78 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Adler, M., van Moerbeke, P.: Matrix integrals, toda symmetries, virasoro constraints, and orthogonal polynomials. Duke Math. J. 80, 863–911 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Adler, M., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. (2) 149, 921–976 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Adler, M., van Moerbeke, P.: Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice. Commun. Math. Phys. 237(3), 397–440 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Alexandrov, A., Zabrodin, A.: Free fermions and tau-functions. J. Geom. Phys. 67, 37–80 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Bertola, M., Eynard, B., Harnad, J.: Partition functions for matrix models and isomonodromic tau functions. J. Phys. A 36, 3067–3083 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bertola, M., Eynard, B., Harnad, J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Commun. Math. Phys. 263(2), 401–437 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Bertola, M., Gekhtman, M., Szmigielski, J.: Peakons and Cauchy biorthogonal polynomials. Symmetry Perturbation Theory 162(4), 23–37 (2009)zbMATHGoogle Scholar
  10. Bertola, M., Gekhtman, M., Szmigielski, J.: The Cauchy two-matrix model. Commun. Math. Phys. 287, 983–1014 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy biorthogonal polynomials. J. Approx. Theory 162, 832–867 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Bertola, M., Gekhtman, M., Szmigielski, J.: Cauchy–Laguerre two-matrix model and the Meijer-G random point field. Commun. Math. Phys. 326, 111–144 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Brézin, E., Kazakov, V.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144–150 (1990)MathSciNetCrossRefGoogle Scholar
  14. Chang, X., Hu, X., Li, S.: Degasperis-Procesi peakons and finite Toda lattice of CKP type: isospectral deformations of tau-functions related to Cauchy kernel (2017). arXiv: 1712.08306
  15. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. 6. KP hierarchies of orthogonal and symplectic type. J. Phys. Soc. Jpn. 50, 3813–3818 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Forrester, P., Kieburg, M.: Relating the Bures measure to the Cauchy two-matrix model. Commun. Math. Phys. 342, 151–187 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Gross, D., Migdal, A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64(2), 127–130 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gerasimov, A., Marshakov, A., Mironov, A., Morozov, A., Orlov, A.: Matrix models of two-dimensional gravity and Toda theory. Nucl. Phys. B. 357, 565–618 (1991)MathSciNetCrossRefGoogle Scholar
  19. Hanard, J., Orlov, A.: Fermionic construction of partition function for two-matrix models and perturbative Schur function expansions. J. Phys. A 28, 8783–8809 (2006)MathSciNetzbMATHGoogle Scholar
  20. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  21. Hu, X.B., Li, S.H.: The partition function of the Bures ensembles as the \(\tau \)-function of BKP and DKP hierarchies: continuous and discrete. J. Phys. A 50, 285201 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Lundmark, H., Szmigielski, J.: Degasperis–Procesi peakons and the discrete cubic string. IMRP Int. Math. Res. Pap. 2, 53–116 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Marshakov, A., Mironov, A., Morozov, A.: Generalized Matrix Models as Conformal Field Theories. Discrete case. Phys. Lett. B 265, 99–107 (1991)MathSciNetCrossRefGoogle Scholar
  25. Mehta, M.: A method of integration over matrix variables. Commun. Math. Phys. 79, 327–340 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Mehta, M.: Random Matrices, 3rd edn. Elsevier/Academic Press, London (2004)zbMATHGoogle Scholar
  27. Miki, H., Tsujimoto, S.: Cauchy biorthogonal polynomials and discrete integrable systems. J. Nonlinear Syst. Appl. 2, 195–199 (2011)Google Scholar
  28. Orlov, A.Y., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies I. Sums over partitions (2012). arXiv: math-ph/12014518.
  29. Orlov, A.Yu., Shiota, T., Takasaki, K.: Pfaffian structures and certain solutions to BKP hierarchies II. Multiple integrals (2016). arXiv: 1611.02244
  30. van der Leur, J.W., Orlov, A., Shiota, T.: CKP hierarchy, bosonic tau function and bosonization formulae. SIGMA 8, 03628 (2012)MathSciNetzbMATHGoogle Scholar
  31. Wang, H.: The \(2+1\) dimensional Kaup–Kuperschmidt equation with self-consistent sources and its exact solutions, nonlinear and modern mathematical physics. In: AIP Conference Proceedings, vol. 1212, no. 1, 273–279 (2010)Google Scholar
  32. Wang, N., Li, C.: Quantum torus algebras and B(C)-type Toda systems. J. Nonlinear Sci. 27, 1957–1970 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Xu, Y.: Biorthogonal polynomials and total positive functions. J. Phys. A: Math. Gen. 35, 5499–5510 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.LSEC, Institute of Computational Mathematics and Scientific Engineering Computing, AMSSChinese Academy of SciencesBeijingChina
  3. 3.Department of Mathematical SciencesUniversity of the Chinese Academy of SciencesBeijingChina

Personalised recommendations