Journal of Nonlinear Science

, Volume 28, Issue 5, pp 1843–1864 | Cite as

The WDVV Associativity Equations as a High-Frequency Limit

  • Maxim V. PavlovEmail author
  • Nikola M. Stoilov


In this paper, we present a new “Hamiltonian” approach for construction of integrable systems. We found an intermediate dispersive system of a Camassa–Holm type. This three-component system has simultaneously a high-frequency (short wave) limit equivalent to the remarkable WDVV associativity equations and a dispersionless (long wave) limit coinciding with a dispersionless limit of the Yajima–Oikawa system.


Associativity equations Integrable dispersive systems Lax pair Dispersionless limit High-frequency limit Bi-Hamiltonian structure Hydrodynamic type system Conservation law 

Mathematics Subject Classification

37K05 37K10 37K20 37K25 



The authors would like to thank Michal Marvan for independently verifying some computations, as well as Oleksandr Chvartatskyi, Eugene Ferapontov and Folkert Müller-Hoissen for the enlightening discussions and important remarks. We are grateful to the anonymous referees, whose comments helped us to improve the presentation of our results. Both authors would like to thank the Mathematical Institute at the University of Göttingen as well as the Max-Plank Institute for Dynamics and Self-Organization for their hospitality. MVP’s work was partially supported by the grant from the Presidium of RAS “Fundamental Problems of Nonlinear Dynamics” and by the RFBR Grant 16-51-55012 China. NMS’s work was partially supported by the Marie Curie Actions Intra-European Fellowship HYDRON (FP7-PEOPLE-2012-IEF, Project Number 332136) and the EU projects PARI and FEDER.


  1. Antonowicz, M., Fordy, A.: Coupled Harry Dym equations with multi-Hamiltonian structures. J. Phys. A 21, L269–75 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Dai, H.H., Pavlov, M.V.: Transformations for the Camassa–Holm equation, its high frequency limit and the Sinh–Gordon equation. Jpn. J. Phys. Soc. Jpn. 67(11), 3655–3657 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Dijkgraaf, R., Verlinde, E., Verlinde, H.: Topological strings in \(\text{ d } < 1\). Nucl. Phys. B 352(1), 59–86 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Dubrovin, B.A.: Integrable systems in topological field theory. Nucl. Phys. B 379, 627–689 (1992a)MathSciNetCrossRefGoogle Scholar
  6. Dubrovin, B.A.: Hamiltonian formalism of Whitham-type hierarchies and topological Landau–Ginsburg models. Commun. Math. Phys. 145, 195–207 (1992b)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Dubrovin, B.A.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin, Heidelberg (1996)CrossRefGoogle Scholar
  8. Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method. Sov. Math. Dokl. 27(3), 665–669 (1983)zbMATHGoogle Scholar
  9. Dubrovin, B.A., Novikov, S.P.: Poisson brackets of hydrodynamic type. Sov. Math. Dokl. 30(3), 651–2654 (1984)zbMATHGoogle Scholar
  10. Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices: differential geometry and Hamiltonian theory. Russ. Math. Surv. 44(6), 35–124 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Ferapontov, E.V.: On the matrix Hopf equation and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants. Phys. Lett. A 179(6), 391–397 (1993)MathSciNetCrossRefGoogle Scholar
  12. Ferapontov, E.V.: Several conjectures and results in the theory of integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants. Theor. Math. Phys. 99(2), 567–570 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Ferapontov, E.V.: Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants. Differ. Geom. Appl. 5(2), 121–152 (1995a)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Ferapontov, E.V.: Isoparametric hypersurfaces in spheres, integrable non-diagonalizable systems of hydrodynamic type, and N-wave systems. Differ. Geom. Appl. 5(4), 335–369 (1995b)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Ferapontov, E.V., Mokhov, O.: The associativity equations in the two-dimensional topological field theory as integrable Hamiltonian non-diagonalizable systems of hydrodynamic type. Funct. Anal. Appl. 30(3), 195–203 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Ferapontov, E.V., Galvao, C.A.P., Mokhov, O., Nutku, Y.: Bi-Hamiltonian structure of equations of associativity in 2-d topological field theory. Commun. Math. Phys. 186, 649–669 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Holm, D.D., Ivanov, R.I.: Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples. J. Phys. A Math. Theor. 43(49), 492001 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Kodama, Yu., Satsuma, J., Ablowitz, M.J.: Nonlinear intermediate long-wave equation: analysis and method of solution. Phys. Rev. Lett. 46(11), 687–690 (1981)MathSciNetCrossRefGoogle Scholar
  19. Kodama, Yu., Ablowitz, M.J., Satsuma, J.: Direct and inverse scattering problems of the nonlinear intermediate long wave equation. J. Math. Phys. 23(4), 564–576 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Kruskal, M.D.: Nonlinear wave equations. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38. Springer, Berlin (1975)Google Scholar
  21. Miura, R.: Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9(8), 1202–1204 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Mokhov, O.I.: Differential equations of associativity in 2D topological field theories and geometry of non-diagonalizable systems of hydrodynamic type. In: International Conference on Integrable Systems “Nonlinearity and Integrability: From Mathematics to Physics”, Feb 21–24, Montpellier, France (1995)Google Scholar
  23. Mokhov, O.I.: Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations. Am. Math. Soc. Translations, ser. 2. Topics in Topology and Math. Physics, Ed. Novikov, S. P. 170, AMS, Providence, RI, pp. 121–151 (1995). arXiv:hep-th/9503076
  24. Pavlov, M.V., Tsarev, S.P.: Three Hamiltonian structures of the Egorov hydrodynamic type systems. Funct. Anal. Appl. 37(1), 32–45 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Strachan, I.A.B., Szablikowski, B.M.: Novikov algebras and a classification of multicomponent Camassa–Holm equations. Stud. Appl. Math. 133(1), 84–117 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Tsarev, S.P.: On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl. 31, 488–491 (1985)MathSciNetzbMATHGoogle Scholar
  27. Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izv. 37(2), 397–419 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Witten, E.: On the structure of the topological phase of two-dimensional gravity. Nucl. Phys. B 340(2–3), 281–332 (1990)MathSciNetCrossRefGoogle Scholar
  29. Yajima, N., Oikawa, M.: Formation and interaction of sonic-Langmuir solitons inverse scattering method. Progr. Theor. Phys. 56(6), 1719–1739 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lebedev Physical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Institut de Mathématiques de BourgogneUniversité de BourgogneDijon CedexFrance

Personalised recommendations