Journal of Nonlinear Science

, Volume 27, Issue 5, pp 1589–1608 | Cite as

A Short Proof of the Large Time Energy Growth for the Boussinesq System

  • Lorenzo BrandoleseEmail author
  • Charafeddine Mouzouni


We give a direct proof of the fact that the \(L^p\)-norms of global solutions of the Boussinesq system in \({\mathbb {R}}^3\) grow large as \(t\rightarrow \infty \) for \(1<p<3\) and decay to zero for \(3<p\le \infty \), providing exact estimates from below and above using a suitable decomposition of the space–time space \({\mathbb {R}}^{+}\times {\mathbb {R}}^{3}\). In particular, the kinetic energy blows up as \(\Vert u(t)\Vert _2^2\sim ct^{1/2}\) for large time. This contrasts with the case of the Navier–Stokes equations.


Kato spaces The Boussinesq equation and asymptotic behavior 

Mathematics Subject Classification

Primary 76D05 Secondary 35B40 



The authors would like to thank the referees for their careful reading and useful suggestions that have been incorporated in this revised version of the manuscript.


  1. Brandolese, L.: Fine properties of self-similar solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 92, 375–401 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Brandolese, L., Schonbek, M.E.: Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Amer. Math. Soc. 364, 5057–5090 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Duoandikoetxea, J., Zuazua, E.: Moments, masses de Dirac et décompositions de fonctions. C.R. Aca. Sci. Paris, t. série I 315, 693–698 (1992)zbMATHGoogle Scholar
  4. Fujigaki, Y., Miyakawa, T.: Asymptotic profiles of nonstationary incompressible Navier–Stokes flows in the whole space. SIAM J. Math. Anal. 33(3), 523–544 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Guo, B., Yuan, G.: On the suitable weak solutions for the Cauchy problem of the Boussinesq equations. Nonlinear Anal. 26(8), 1367–1385 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Kato, T.: Strong \(L^{p}\)-solutions of the Navier–Stokes equation in \(\mathbb{R}^{m}\), with applications to weak solutions. Math. Zeit. 187, 471–480 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Han, P.: Algebraic \(L^2\) decay for weak solutions of a viscous Boussinesq system in exterior domains. J. Differ. Equ. 252(12), 6306–6323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Han, P., Schonbek, M.E.: Large time decay properties of solutions to a viscous Boussinesq system in a half space. Adv. Differ. Equ. 19(1–2), 87–132 (2014)MathSciNetzbMATHGoogle Scholar
  9. Hernon, D., Walsh, Ed J.: Enhanced energy dissipation rates in laminar boundary layers subjected to elevated levels of freestream turbulence. Fluid Dyn. Res. 39(4), 305–319 (2007)CrossRefzbMATHGoogle Scholar
  10. Lemarié-Rieusset, P.G.: Recent developments in the Navier–Stokes problem. Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL (2002)zbMATHGoogle Scholar
  11. Meyer, Y.: Wavelets, paraproducts, and Navier–Stokes equations. In: Current Developments in Mathematics, 1997, Cambridge, MA, International Press, Boston, MA, pp. 105–212 (1996)Google Scholar
  12. Miyakawa, T.: On space-time decay properties of nonstationary incompressible Navier–Stokes flows in \(\mathbf{R}^n\). Funkcial. Ekvac. 43(3), 541–557 (2000)MathSciNetzbMATHGoogle Scholar
  13. Schonbek, M.E.: \(L^2\) decay for weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 88(3), 209–222 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Weng, S.: Remarks on asymptotic behaviors of strong solutions to a viscous Boussinesq system. Math. Methods Appl. Sci 39(15), 4398–4418 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Univ Lyon, Université Claude Bernard Lyon 1CNRS UMR 5208, Institut Camille JordanVilleurbanne CedexFrance
  2. 2.Univ Lyon, École centrale de Lyon, CNRS UMR 5208Institut Camille JordanÉcully CedexFrance

Personalised recommendations