Journal of Nonlinear Science

, Volume 27, Issue 2, pp 531–572 | Cite as

Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

  • C. MatsuokaEmail author
  • K. Nishihara
  • T. Sano


A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer–Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.


Non-uniform current-vortex sheet Richtmyer–Meshkov instability Alfvén number Surface Alfvén wave MHD interfacial instability 

Mathematics Subject Classification

76W05 76E17 76B47 76E30 



This work was supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 26287147) and (C) (Grant No. 23540453) from the Japan Society for the Promotion of Science, a Grant-in-Aid for Research Promotion, Ehime University, and joint research project of ILE, Osaka University. The authors would like to thank Professor K. Hiraide and Professor S. Yanagi for their mathematical advice. We are deeply grateful to Professor A. Kageyama, Professor K. Kusano, Professor J. G. Wouchuk, and Professor Z. Yoshida for their valuable comments and discussions on plasma physics. We are also particularly indebted to Professor Y. Kaneda for his advice and suggestions.


  1. Agliskiy, Y., Velikovich, A., Karasik, M., Serlin, V., Pawley, C., Schmitt, A., Obenschain, S., Mostovych, A., Gardner, J., Metzler, N.: Direct observation of mass oscillation due to ablative Richtmyer–Meshkov instability in plastic targets. Phys. Rev. Lett. 87, 265001 (2001)CrossRefGoogle Scholar
  2. Alexakis, A.: Large-scale magnetic fields in magnetohydrodynamic turbulence. Phys. Rev. Lett. 110, 084502 (2013)CrossRefGoogle Scholar
  3. Arnett, W.D., Bahcall, J.N., Kirshner, R.P., Woosley, S.E.: Supernova 1987a. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)CrossRefGoogle Scholar
  4. Arshukova, I.L., Nikolai, V.E., Biernat, H.K.: Magnetohydrodynamic instability of a high magnetic shear layer with a finite curvature radius. Phys. Plasmas 9, 401–408 (2002)MathSciNetCrossRefGoogle Scholar
  5. Axford, W.I.: The stability of plane current-vortex sheets. Q. J. Mech. Appl. Math. 13, 314–324 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Axford, W.I., Hines, C.O.: A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433–1464 (1961)MathSciNetCrossRefGoogle Scholar
  7. Baker, G., Nachbin, A.: Stable methods for vortex sheet motion in the presence of surface tension. SIAM J. Sci. Comput. 19, 1737–1766 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Baker, G., Meiron, D.I., Orszag, S.A.: Generalized vortex methods for free surface flow problems. J. Fluid Mech. 123, 477–501 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Birkhoff, G.: Helmholtz and Taylor instability. Proc. Symp. Appl. Math. Soc. 13, 55–76 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Brouillette, M.: The Richtmyer–Meshkov instability. Ann. Rev. Fluid Mech. 34, 445–468 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Cao, J., Wu, Z., Ren, H., Li, D.: Effects of shear flow and transverse magnetic field on Richtmyer–Meshkov instability. Phys. Plasmas 15, 042102 (2008)CrossRefGoogle Scholar
  12. Chen, L., Hasegawa, A.: A theory of long period magnetic pulsations, 2. Impulse excitation of surface eigen-modes. J. Geophys Res. 79, 1033–1037 (1974)CrossRefGoogle Scholar
  13. Clarke, D.A.: A consistent method of characteristics for multidimensional magnetohydrodynamics. Astrophys. J. 457, 291–320 (1996)CrossRefGoogle Scholar
  14. Colella, P., Woodward, P.R.: The piecewise parabolic method (ppm) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)CrossRefzbMATHGoogle Scholar
  15. Daido, H., Miki, F., Fujita, M., Sawai, K., Fujita, H., Kitagawa, Y., Nakai, S., Yamanaka, C.: Generation of a strong magnetic field by an intense co2 laser pulse. Phys. Rev. Lett. 56, 846–849 (1986)CrossRefGoogle Scholar
  16. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)CrossRefGoogle Scholar
  17. Field, G.B., Hutchins, J.: A statistical model of interstellar clouds 2. Effect of varying cloud cross-sections and velocities. Astrophys. J. 153, 737–742 (1968)CrossRefGoogle Scholar
  18. Fraley, G.: Rayleigh–Taylor stability for a normal shock wave-density discontinuity interaction. Phys. Fluids 29, 376–387 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  19. Fujioka, S., Zhang, Z., et al.: Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 1170 (2013)Google Scholar
  20. Gerwin, R.: Hydromagnetic surface waves in a conducting liquid surrounded by a compressible gas. Phys. Fluids 10, 2164–1365 (1967)CrossRefzbMATHGoogle Scholar
  21. Giacalone, J., Jokipii, J.R.: Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. 663, L41–L44 (2007)CrossRefGoogle Scholar
  22. Godreche, C., Manneville, P.: Hydrodynamics and Nonlinear Instabilities. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  23. Goncharov, V.: Theory of ablative Richtmyer–Meshkov instability. Phys. Rev. Lett. 82, 2091–2094 (1999)CrossRefGoogle Scholar
  24. Hawley, J.F., Zabusky, N.J.: Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett. 63, 1241–1244 (1989)CrossRefGoogle Scholar
  25. Herrmann, M., Moin, P., Abarzhi, S.I.: Nonlinear evolution of the Richtmyer–Meshkov instability. J. Fluid Mech. 612, 311–338 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Holm, D.D., Nitsche, M., Putkaradze, V.: Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion. J. Fluid Mech. 555, 149–176 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hunter, J.K., Thoo, J.B.: On the weakly nonlinear Kelvin–Helmholtz instability of tangential discontinuities in mhd. J. Hyper. Differ. Equ. 8, 691–726 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Döppner, T., Hinkel, D.E., Hopkins, J.L., Berzak Hopkins, L.F., Kline, J.L., Le Pape, S., Ma, T., MacPhee, A.G., Milovich, J.L., Pak, A., Park, H.-S., Patel, P.K., Remington, B.A., Salmonson, J.D., Springer, P.T., Tommasini, R.: Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–348 (2014)CrossRefGoogle Scholar
  29. Ilin, K.L., Trakhinin, Y.L., Vladimirov, V.A.: The stability of steady magnetohydrodynamic flows with current-vortex sheets. Phys. Plasmas 10, 2469–2658 (2003)MathSciNetCrossRefGoogle Scholar
  30. Inoue, T., Shimoda, J., Ohira, Y., Yamazaki, R.: The origin of radially aligned magnetic fields in young supernova remnants. Astrophys. J. 772, L20–24 (2012)CrossRefGoogle Scholar
  31. Ishizaki, R., Nishihara, K.: Propagation of a ripple shock wave driven by nonuniform laser ablation. Phys. Rev. Lett. 78, 1920–1923 (1997)CrossRefGoogle Scholar
  32. Jacobs, J.W., Sheeley, J.M.: Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8, 405–415 (1996)CrossRefGoogle Scholar
  33. Kerr, R.M.: Simulation of Rayleigh–Taylor flows using vortex blobs. J. Comput. Phys. 76, 48–84 (1988)CrossRefzbMATHGoogle Scholar
  34. Kevkaham, N.: The vorticity jump across a shock in a non-uniform flow. J. Fluid Mech. 341, 371–384 (1997)MathSciNetCrossRefGoogle Scholar
  35. Koyama, H., Inutake, S.: An origin of supersonic motions in interstellar clouds. Astrophys. J. 564, L97–L101 (2002)CrossRefGoogle Scholar
  36. Krasny, R.: A study of singularity formation in a vortex sheet by the point vortex approximation. J. Fluid Mech. 167, 65–93 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Krasny, R.: Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123–155 (1987)CrossRefGoogle Scholar
  38. Ma, T., Patel, P.K., et al.: Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions. Phys. Rev. Lett. 111, 085004 (2013)CrossRefGoogle Scholar
  39. Matsuoka, C.: Three-dimensional vortex sheet motion with axial symmetry in incompressible Richtmyer–Meshkov and Rayleigh–Taylor instabilities. Phys. Scr. T155, 014013 (2013)CrossRefGoogle Scholar
  40. Matsuoka, C., Nishihara, K.: Vortex core dynamics and singularity formations in incompressible Richtmyer–Meshkov instability. Phys. Rev. E 73–74: 026304, 049902(E) (2006)Google Scholar
  41. Matsuoka, C., Nishihara, K., Fukuda, Y.: Nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 67–68: 036301, 029902(E) (2003)Google Scholar
  42. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dyn. 4, 101–108 (1969)CrossRefGoogle Scholar
  43. Mostert, W., Wheatley, V., Samtaney, R., Pullin, D.I.: Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer–Meshkov instability. Phys. Fluids 27, 104102 (2015)CrossRefGoogle Scholar
  44. Muller, W.C., Grappin, R.: Spectral energy dynamics in magnetohydrodynamic turbulence. Phys. Rev. Lett. 95, 114502 (2005)CrossRefGoogle Scholar
  45. Nishihara, K., Wouchuk, J.G., Matsuoka, C., Ishizaki, R., Zhakhovskii, V.V.: Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Philos. Trans. R. Soc. A 368, 1769–1807 (2010)CrossRefzbMATHGoogle Scholar
  46. Nitsche, M., Krasny, R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  47. Perkins, L.J., Logan, B.G., Zimmerman, G.B., Werner, C.J.: Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields. Phys. Plasmas 20, 072708 (2013)CrossRefGoogle Scholar
  48. Pullin, D.I.: Numerical studies of surface-tension effects in nonlinear Kelvin–Helmholtz and Rayleigh–Taylor instability. J. Fluid Mech. 119, 507–532 (1982)CrossRefzbMATHGoogle Scholar
  49. Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  50. Rott, N.: Diffraction of a weak shock with vortex generation. J. Fluid Mech. 1, 111–128 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  51. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  52. Samtaney, R.: Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids 15, L53–L56 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  53. Samtaney, R., Zabusky, N.J.: On shock polar analysis and analytical expressions for vorticity deposition in shock-accelerated density-stratified interface. Phys. Fluids A 5, 1285–1287 (1993)CrossRefzbMATHGoogle Scholar
  54. Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)CrossRefGoogle Scholar
  55. Sano, T., Inutsuka, S., Miyama, S.M.: A saturation mechanism of magnetorotational instability due to ohmic dissipation. Astrophys. J 506, L57–L60 (1998)CrossRefGoogle Scholar
  56. Sano, T., Nishihara, K., Matsuoka, C., Inoue, T.: Magnetic field amplification associated with the Richtmyer–Meshkov instability. Astrophys. J 758, 126 (2012)CrossRefGoogle Scholar
  57. Sano, T., Inoue, T., Nishihara, K.: Critical magnetic field strength for suppression of the Richtmyer–Meshkov instability in plasmas. Phys. Rev. Lett. 111, 016102 (2013)CrossRefGoogle Scholar
  58. Shelley, M.J.: A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. J. Fluid Mech. 244, 493–526 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  59. Shore, S.N.: Astrophysical Hydrodynamics: An Introduction, 2nd edn. Wiley, London (2007)CrossRefGoogle Scholar
  60. Stamper, J.A., McLean, E.A.: Studies of spontaneous magnetic field in laser-produced plasmas by faraday rotation. Phys. Rev. Lett 40, 1177–1181 (1978)CrossRefGoogle Scholar
  61. Stone, J.M., Norman, M.L.: Zeus-2d A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. 80, 791–818 (1992)CrossRefGoogle Scholar
  62. Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T., Maeda, Y.: Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576–578 (2007)CrossRefGoogle Scholar
  63. van Leer, B.: Towards the ultimate conservative difference scheme. V—A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)CrossRefGoogle Scholar
  64. Velikovich, A.L.: Analytic theory of Richtmyer–Meshkov instability for the case of reflected rarefaction wave. Phys. Fluids 8, 1666–1679 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  65. Wheatley, V., Samtaney, R., Pullin, D.I.: The Richtmyer–Meshkov instability in magnetohydrodynamics. Phys. Fluids 21, 082102 (2009)CrossRefzbMATHGoogle Scholar
  66. Wheatley, V., Samtaney, R., Pullin, D.I., Gehre, R.M.: The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics. Phys. Fluids 26, 016102 (2014)Google Scholar
  67. Wouchuk, J.G.: Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 63, 056303 (2001)CrossRefGoogle Scholar
  68. Wouchuk, J.G., Cavada, J.L.: Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface. Phys. Rev. E 70, 046303 (2004)CrossRefGoogle Scholar
  69. Wouchuk, J.G., Nishihara, K.: Linear perturbation growth at a shocked interface. Phys. Plasmas 3, 3761–3776 (1996)CrossRefGoogle Scholar
  70. Wouchuk, J.G., Nishihara, K.: Asymptotic growth in the linear Richtmyer–Meshkov instability. Phys. Plasmas 4, 1028–1038 (1997)MathSciNetCrossRefGoogle Scholar
  71. Wouchuk, J.G., Ruiz de Lira, H., Velikovich, A.L.: Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79, 066315 (2009)MathSciNetCrossRefGoogle Scholar
  72. Yoneda, H., Namiki, T., et al.: Strong compression of a magnetic field with a laser-accelerated foil. Phys. Rev. Lett. 109, 125004 (2012)CrossRefGoogle Scholar
  73. Zaidel, P.M.: Shock wave from a slightly curved piston. J. Appl. Math. Mech. 24, 316–327 (1960)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Applied Mathematics, Graduate School of EngineeringOsaka City UniversityOsakaJapan
  2. 2.Institute of Laser EngineeringOsaka UniversityOsakaJapan

Personalised recommendations