Advertisement

Journal of Nonlinear Science

, Volume 27, Issue 1, pp 1–44 | Cite as

Poincaré’s Equations for Cosserat Media: Application to Shells

  • Frederic Boyer
  • Federico Renda
Article

Abstract

In 1901, Henri Poincaré discovered a new set of equations for mechanics. These equations are a generalization of Lagrange’s equations for a system whose configuration space is a Lie group which is not necessarily commutative. Since then, this result has been extensively refined through the Lagrangian reduction theory. In the present contribution, we apply an extended version of these equations to continuous Cosserat media, i.e. media in which the usual point particles are replaced by small rigid bodies, called microstructures. In particular, we will see how the shell balance equations used in nonlinear structural dynamics can be easily deduced from this extension of the Poincaré’s result. In future, these results will be used as foundations for the study of squid locomotion, which is an emerging topic relevant to soft robotics.

Keywords

Cosserat media Euler-Poincaré reduction Geometrically exact shells 

List of symbols

t

Time

\({\mathcal {E}}\)

Three-dimensional geometric space of classical mechanics

\({\mathcal {B}}\)

Three-dimensional material space of a classical continuous medium

\({\mathcal {D}}\)

Material (p-dimensional, \(p<3\)) reference subspace

\({\mathcal {M}}\)

Rigid microstructure

\({\mathcal {B}}={\mathcal {D}}\times {\mathcal {M}}\)

Material space of a Cosserat medium

\((O,E_{1},E_{2},E_{3})\)

Material frame attached to \({\mathcal {B}}\)

\((o,e_{1},e_{2},e_{3})\)

Spatial frame attached to \({\mathcal {E}}\)

\(x=x^{i}e_{i}\)

Points of geometric space

\(X=X^{i}E_{i}\)

Material points of \({\mathcal {B}}\)

\(\overline{X}=X^{\alpha }E_{\alpha }\)

Material points of \({\mathcal {D}}\)

\(\varPhi _{t}\)

Transformation at time t from material to geometric space

\(\varPhi _{t}({\mathcal {B}})\)

Deformed configuration of \({\mathcal {B}}\)

\(\varPhi _{o}({\mathcal {B}})\)

Reference configuration of \({\mathcal {B}}\)

\((\varPhi _{t}\circ e)({\mathcal {D}})\)

Deformed configuration of \({\mathcal {D}}\)

\((\varPhi _{o}\circ e)({\mathcal {D}})\)

Reference configuration of \({\mathcal {D}}\)

\(r(\overline{X})\)

Position of \((\varPhi _{t}\circ e)(\overline{X})\)

\(R(\overline{X})\in SO(3)\)

Rotation tensor mapping \((E_{1},E_{2},E_{3})\) onto \((t_{1},t_{2},t_{3})(\overline{X})\)

\((g_{1},g_{2},g_{3})(X)\)

Convected basis on \(\varPhi _{t}({\mathcal {B}})\) at \(\varPhi _{t}(X)\)

\((h_{1}, \ldots h_{p})(\overline{X})\)

Convected basis on \((\varPhi _{t}\circ e)({\mathcal {D}})\) at \(r(\overline{X})\)

\((t_{1},t_{2},t_{3})(\overline{X})\)

Orthonormal spatial basis attached to the X-microstructure

\((g_{ij}g^{i}\otimes g^{j})(X)\)

Euclidean metric tensor in the convected basis of \(\varPhi _{t}({\mathcal {B}})\)

\((h_{\alpha \beta }h^{\alpha }\otimes h^{\beta })(\overline{X})\)

Euclidean metric induced on \((\varPhi _{t}\circ e)({\mathcal {D}})\) in its convected basis

\(\nu \), \(\nu _{o}\), \(\nu _{t}\)

Oriented unit normal vector to the material, reference and deformed surface element of \({\mathcal {D}}\)

\(\textit{dS}\), \(\textit{dS}_{o}\), \(\textit{dS}_{t}\)

Area of the material, reference and deformed surface element of \({\mathcal {D}}\)

\({\mathcal {C}}\)

Configuration space of a Cosserat medium \({\mathcal {D}}\times {\mathcal {M}}\)

G and \(\texttt {g}\)

Group of transformation and transformation of microstructure

\(\mathfrak {g}\), \(\mathfrak {g}^{*}\)

Lie algebra of G and its dual

Ad and \(Ad^{*}\)

Adjoint and co-adjoint action map of G on \(\mathfrak {g}\) and \(\mathfrak {g}^{*}\)

ad and \(ad^{*}\)

Adjoint and co-adjoint action map of \(\mathfrak {g}\) on \(\mathfrak {g}\) and \(\mathfrak {g}^{*}\)

\(\eta \) and \(\xi _{\alpha }\)

Left-invariant fields along time and space variables

\(\mathfrak {L}\), \(\mathfrak {L}_{o}\) and \(\mathfrak {L}_{t}\)

Density of left-reduced Lagrangian of a Cosserat medium per unit of its material, reference and deformed volume

\(\frac{\partial \mathfrak {L}}{\partial \eta }\),\(\frac{\partial \mathfrak {L}_{o}}{\partial \eta }\) and \(\frac{\partial \mathfrak {L}_{t}}{\partial \eta }\)

Densities of material t-conjugate (kinetic) momentum, per unit of material, reference and deformed volume

\(\frac{\partial \mathfrak {L}}{\partial \xi _{\alpha }}\),\(\frac{\partial \mathfrak {L}_{o}}{\partial \xi _{\alpha }}\) and \(\left[ \frac{\partial \mathfrak {L}}{\partial \xi _{\alpha }}\right] _{t}\)

Densities of material \(X^{\alpha }\)-conjugate (stress) momentum, per unit of material, reference and deformed volume

\(F_\mathrm{ext}\), \(F_{\mathrm{ext},o}\) and \(F_{\mathrm{ext},t}\)

Densities of material external forces per unit of material, reference and deformed volume

\(\overline{F}_\mathrm{ext}\), \(\overline{F}_{\mathrm{ext},o}\) and \(\overline{F}_{\mathrm{ext},t}\)

Densities of external forces per unit of material, reference and deformed boundary volume

\({\mathcal {D}}\times {\mathbb {R}}^{+}\)

Space–time of a p-dimensional Cosserat medium

\(X^{0}\frac{\partial }{\partial t}+X^{\alpha }\frac{\partial }{\partial X^{\alpha }}\)

Point in space–time with \(t=X^{0}\)

\(\varUpsilon \)

Space–time 1-form field with value in \(\mathfrak {g}\)

\(\varLambda \), \(\varLambda _{o}\) and \(\varLambda _{t}\)

Density of a space–time vector field with value in \(\mathfrak {g}^{*}\), per unit of material, reference and deformed volume

\(\langle .,. \rangle \) and (., .)

Duality product in \(\mathfrak {g}\) and space–time

\(Ad^{*}_{\texttt {g}^{-1}}\left( \sqrt{|h|}\left( \frac{\partial \mathfrak {L}_{t}}{\partial \eta }\right) \right) \)

Densities of spatial (in the fixed frame) kinetic wrench, per unit of deformed volume

\(Ad^{*}_{\texttt {g}^{-1}}\left( \sqrt{|h|}\left( \frac{\partial \mathfrak {L}_{t}}{\partial \xi _{\alpha }}\right) \right) \)

Densities of spatial (in the fixed frame) stress wrench, per unit of deformed volume

\(\textit{SE}(3)\)

Special Euclidean group in \({\mathbb {R}}^{3}\) with Lie algebra \(\textit{se}(3)\)

(Rr)

Transformation of \(\textit{SE}(3)\)

\((\varOmega ^{T},V^{T})^{T}\in se(3)\)

Material time rate of transformation (velocity) of the microstructure frames

\((\omega ^{T},v^{T})^{T}\in se(3)\)

Spatial time rate of transformation (velocity) of the microstructure frames

\((\varSigma _{t}^{T},P_{t}^{T})^{T} \in se(3)^{*}\)

Density of material kinetic wrench per unit of deformed volume

\((\sigma _{t}^{T},p_{t}^{T})^{T}\in se(3)^{*}\)

Density of spatial (in the microstructure frame) kinetic wrench per unit of deformed volume

\((K_{\alpha }^{T},\varGamma _{\alpha }^{T})^{T}\in \textit{se}(3)\)

Material \(X^{\alpha }\)-rate of transformation of the microstructure frames

\((k_{\alpha }^{T},\gamma _{\alpha }^{T})^{T}\in \textit{se}(3)\)

Spatial \(X^{\alpha }\)-rate of transformation of the microstructure frames

\((M_{\alpha ,t}^{T},N_{\alpha ,t}^{T})^{T} \in \textit{se}(3)^{*}\)

Density of material stress wrench per unit of deformed volume

\((m_{\alpha ,t}^{T},n_{\alpha ,t}^{T})^{T}\in \textit{se}(3)^{*}\)

Density of spatial stress wrench per unit of deformed volume

\((\overline{\rho },\overline{\rho }_{o},\overline{\rho }_{t})\) and \((\overline{J},\overline{J}_{o},\overline{J}_{t})\)

Densities of mass and of material angular inertia tensor per unit of material, reference and deformed volume

\((\overline{I},\overline{I}_{o},\overline{I}_{t})\)

Densities of spatial inertia tensor per unit of material, reference and deformed volume

\(\epsilon _{\alpha \beta },\rho _{\alpha \beta },\tau _{\alpha }\)

Effective strain measures (stretching, bending, transverse shearing) of a classical shell

\({\mathcal {N}}_{t}^{\alpha \beta },{\mathcal {M}}_{t}^{\alpha \beta },{\mathcal {Q}}_{t}^{\alpha }\)

Densities of effective stress of a classical shell per unit of deformed volume

Mathematics Subject Classification

74A60 

References

  1. Antman, S.S.: Nonlinear problems of elasticity. In: Mathematical Sciences, vol. 107. Springer, New York (2005)Google Scholar
  2. Arnold, V.I.: Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. J. Fourier 16(1), 319–361 (1966)CrossRefzbMATHGoogle Scholar
  3. Arnold, V.I.: Mathematical Methods in Classical Mechanics, 2nd edn. Springer, New-York (1988)Google Scholar
  4. Boyer, F., Primault, D.: The Poincaré–Chetayev equations and flexible multibody systems. J. Appl. Math. Mech. 69(6), 925–942 (2005). http://hal.archives-ouvertes.fr/hal--00672477
  5. Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006)CrossRefGoogle Scholar
  6. Boyer, F., Porez, M., Leroyer, A., Visonneau, M.: Fast dynamics of an eel-like robot-comparisons with Navier–Stokes simulations. IEEE Trans. Robot. 24(6), 1274–1288 (2008)CrossRefGoogle Scholar
  7. Boyer, F., Porez, M., Leroyer, A.: Poincaré–Cosserat equations for the Lighthill three-dimensional large amplitude elongated body theory: Application to robotics. J. Nonlinear Sci. 20, 47–79 (2010)CrossRefzbMATHGoogle Scholar
  8. Boyer, F., Ali, S., Porez, M.: Macro-continuous dynamics for hyper-redundant robots: application to kinematic locomotion bio-inspired by elongated body animals. IEEE Trans. Robot. 28(2), 303–317 (2012)CrossRefGoogle Scholar
  9. Castrillón López, M., Ratiu, T.S., Shkoller, S.: Reduction in principal fiber bundles: covariant Euler–Poincaré equations. Proc. Am. Math. Soc. 128(7), 2155–2164 (2000)CrossRefzbMATHGoogle Scholar
  10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)zbMATHGoogle Scholar
  11. Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic lie group variational integrator for a geometrically exact beam in r3. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3492–3512 (2014)MathSciNetCrossRefGoogle Scholar
  12. Ebin, D.G., Marsden, J.E.: Groups of diffeomorphism and the motion of an incompressible fluid. Ann. Math 92, 102–163 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal. 197(3), 811–902 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1998)zbMATHGoogle Scholar
  15. Fox, D.D., Simo, J.C.: A drill rotation formulation for geometrically exact shells. Comput. Methods Appl. Mech. Eng. 98, 329–343 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Variational principles for spin systems and the Kirchhoff rod. J. Geom. Mech. 1(4), 417–444 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Green, A.E., Naghdi, P.M.: Non-isothermal theory of rods, plates and shells. Int. J. Solids Struct. 6, 209–244 (1970)CrossRefzbMATHGoogle Scholar
  18. Green, A.E., Naghdi, P.M.: On the derivation of shell theories by direct approach. J. Appl. Mech. 41(1), 173–176 (1974)Google Scholar
  19. Green, A.E., Zerna, W.: Theoretical Elasticity. Clarendon Press, Oxford (1960). end ed. editionzbMATHGoogle Scholar
  20. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. Holm, D.D., Putkaradze, V.: Nonlocal orientation-dependent dynamics of charged strands and ribbons. C. R. Acad. Sci. Paris Ser. I 347, 1093–1098 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  23. Lichnerowicz, A.: Elements de Calcul Tensoriel. Jacques Gabay, Paris (1987)zbMATHGoogle Scholar
  24. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, New-Jersey (1969)zbMATHGoogle Scholar
  25. Marle, C.-M.: On Henri Poincaré’s note: “sur une forme nouvelle des equations de la mécanique”. J. Geom. Symmetry Phys. 29, 1–38 (2013)zbMATHGoogle Scholar
  26. Marsden, J.E., Montgomery, R., Ratiu, T.S.: Reduction, symmetry, and phases in mechanics. In: Memoirs of the American Mathematical Society, vol. 88 (436). American Mathematical Society (1990)Google Scholar
  27. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity, 1st edn. Dover, Mineola (1994)zbMATHGoogle Scholar
  28. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  29. Milne-Thomson, L.M.: Theoretical Hydrodynamics. Macmillan, London (1938)zbMATHGoogle Scholar
  30. Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. Compte Rendu de l’Académie des Sciences de Paris 132, 369–371 (1901)zbMATHGoogle Scholar
  31. Pommaret, J.F.: Partial Differential Equations and Group Theory, 1st edn. Springer, Netherlands (1994)CrossRefzbMATHGoogle Scholar
  32. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)MathSciNetzbMATHGoogle Scholar
  33. Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., Laschi, C.: Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30(5), 1109–1122 (2014)CrossRefGoogle Scholar
  34. Simmonds, J.G., Danielson, D.A.: Nonlinear shell theory with finite rotation and stress-function vectors. J. Appl. Mech. 39, 1085–1090 (1972)CrossRefzbMATHGoogle Scholar
  35. Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72(3), 267–304 (1989)Google Scholar
  36. Simo, J.C., Marsden, J.E., Krishnaprasad, P.S.: The hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Simo, J.C., Rifai, M.S., Fox, D.D.: On a stress resultant geometrically exact shell model. part vi: conserving algorithms for non-linear dynamics. Int. J. Numer. Methods Eng. 34, 117–164 (1992)CrossRefzbMATHGoogle Scholar
  38. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(2), 125–161 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Spencer, D.C.: Overdetermined systems of partial differential equations. Bull. Am. Math. Soc. 75, 1–114 (1965)MathSciNetGoogle Scholar
  40. Thomas, J.R., Hughes, Brezzi, F.: On drilling degrees of freedom. Comput. Methods Appl. Mech. Eng. 72, 105–121 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  41. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17, 85–112 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Verl, A., Albu-Schaeffer, A., Brock, O. (eds). Soft Robotics: Transferring Theory to Application. Springer, New York (2015)Google Scholar
  43. Vu-Quoc, L.: On the algebra of two point tensors and their applications. Z. Angew. Math. Mech.: ZAMM 76(9), 540–541 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  44. Weymouth, G.D., Triantafyllou, M.S.: Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367–385 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.EMNIRCCyNNantes Cedex 3France
  2. 2.Khalifa University, KURIAbu DhabiUAE

Personalised recommendations