Advertisement

Journal of Nonlinear Science

, Volume 26, Issue 2, pp 405–451 | Cite as

From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation

  • John Burke
  • Mathieu Desroches
  • Albert Granados
  • Tasso J. KaperEmail author
  • Martin Krupa
  • Theodore Vo
Article

Abstract

In this article, we study canard solutions of the forced van der Pol equation in the relaxation limit for low-, intermediate-, and high-frequency periodic forcing. A central numerical observation made herein is that there are two branches of canards in parameter space which extend across all positive forcing frequencies. In the low-frequency forcing regime, we demonstrate the existence of primary maximal canards induced by folded saddle nodes of type I and establish explicit formulas for the parameter values at which the primary maximal canards and their folds exist. Then, we turn to the intermediate- and high-frequency forcing regimes and show that the forced van der Pol possesses torus canards instead. These torus canards consist of long segments near families of attracting and repelling limit cycles of the fast system, in alternation. We also derive explicit formulas for the parameter values at which the maximal torus canards and their folds exist. Primary maximal canards and maximal torus canards correspond geometrically to the situation in which the persistent manifolds near the family of attracting limit cycles coincide to all orders with the persistent manifolds that lie near the family of repelling limit cycles. The formulas derived for the folds of maximal canards in all three frequency regimes turn out to be representations of a single formula in the appropriate parameter regimes, and this unification confirms the central numerical observation that the folds of the maximal canards created in the low-frequency regime continue directly into the folds of the maximal torus canards that exist in the intermediate- and high-frequency regimes. In addition, we study the secondary canards induced by the folded singularities in the low-frequency regime and find that the fold curves of the secondary canards turn around in the intermediate-frequency regime, instead of continuing into the high-frequency regime. Also, we identify the mechanism responsible for this turning. Finally, we show that the forced van der Pol equation is a normal form-type equation for a class of single-frequency periodically driven slow/fast systems with two fast variables and one slow variable which possess a non-degenerate fold of limit cycles. The analytic techniques used herein rely on geometric desingularisation, invariant manifold theory, Melnikov theory, and normal form methods. The numerical methods used herein were developed in Desroches et al. (SIAM J Appl Dyn Syst 7:1131–1162, 2008, Nonlinearity 23:739–765 2010).

Keywords

Folded singularities Canards Torus canards Torus bifurcation Mixed-mode oscillations 

Mathematics Subject Classification

Primary: 34E17 34E15 34A26 70K70 Secondary: 34E13 34D15 34C29 34C45 37G15 92C20 70K43 

Notes

Acknowledgments

The research of J.B., T.J.K., and T.V. was partially supported by NSF-DMS 1109587. T.J.K. thanks INRIA for their hospitality and for providing a climate highly conducive to research and collaboration during a visit. The authors thank Nick Benes, Mark Kramer, Christian Kuehn, John Mitry, and Martin Wechselberger for useful conversations.

References

  1. Baer, S., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations. SIAM J. Appl. Dyn. Syst. 46, 721–739 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Benes, G.N., Barry, A.M., Kaper, T.J., Kramer, M.A., Burke, J.: An elementary model of torus canards. Chaos 21, 023131 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Benoît, E.: Canards et enlacements. Inst. Haut. Etud. Sci. Publ. Math. 72, 63–91 (1990)MathSciNetCrossRefGoogle Scholar
  4. Benoit, E., Callot, J.-L., Diener, F., Diener, M.: Chasse au canard. Collectanea Mathematicae 31–32, 37–119 (1981)MathSciNetzbMATHGoogle Scholar
  5. Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J., Oliva, R., Weckesser, W.: The forced van der Pol equation II: canards in the reduced system. SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Braaksma, B.: Critical Phenomena in Dynamical Systems of van der Pol type, Ph.D. thesis, University of Utrecht (1993)Google Scholar
  7. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. In: “Bifurcation Theory and Spatio-Temporal Pattern Formation”, Fields Institute Communications, vol. 49, pp. 39–63. American Mathematical Society, Providence, RI (2006)Google Scholar
  8. Burke, J., Desroches, M., Barry, A.M., Kaper, T.J., Kramer, M.A.: A showcase of torus canards in neuronal bursters. J. Math. Neurosci. 2, 3 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cartwright, M.L.: Forced Oscillations in Nonlinear Systems Contrib. to Theory of Nonlinear Oscillations (Study 20), pp. 149–241. Princeton University Press, Princeton (1950)Google Scholar
  10. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order: I. The equation \(\ddot{y} - k(1-y^2)\dot{y}+y =b \lambda k \cos (\lambda t+a)\); \(k\) large. J. Lond. Math. Soc. 20, 180–189 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Delshams, A., Seara, T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Comm. Math. Phys. 150(3), 443–463 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Delshams, A., Seara, T.M.: Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom. Math. Phys. Electron. J. 3, 4 (1997)MathSciNetzbMATHGoogle Scholar
  13. Desroches, M., Krauskopf, B., Osinga, H.M.: The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst. 7, 1131–1162 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Desroches, M., Krauskopf, B., Osinga, H.M.: Numerical continuation of canard orbits in slow-fast dynamical systems. Nonlinearity 23, 739–765 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Desroches, M., Guckenheimer, J., Kuehn, C., Krauskopf, B., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Desroches, M., Krupa, M., Rodrigues, S.: Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67, 989–1017 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Diener, M.: The canard unchained or how fast–slow systems bifurcate. Math. Intell. 6, 38–49 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, K.E., Paffenroth, R.C., Sanstede, B., Wang, X.J., Zhang, C.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. http://cmvl.cs.concordia.ca/ (2007)
  19. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Mem. Am. Math. Soc. 577 (1996)Google Scholar
  20. Dumortier, F., Roussarie, R.: Geometric singular perturbation theory beyond normal hyperbolicity. In: Jones, C.K.R.T., Khibnik, A.I. (ed.) Multiple Time Scales Dynamical Systems, IMA Volumes in Mathematics and its Applications, vol. 122, pp. 29–64 (2001)Google Scholar
  21. Eckhaus, W.: Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math. 985, 449–494 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Erchova, I., McGonigle, D.J.: Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos 18, 015115 (2008)MathSciNetCrossRefGoogle Scholar
  23. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Eqs. 31, 53–98 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Flaherty, J.E., Hoppensteadt, F.C.: Frequency entrainment of a forced van der Pol oscillator. Stud. Appl. Math. 58, 5–15 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Gelfreich, V.G.: Melnikov method and exponentially small splitting of separatrices. Phys. D 101, 227–248 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  27. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  28. Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation I: the slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2, 1–35 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Haiduc, R.: Horseshoes in the forced van der Pol system. Nonlinearity 22, 213–237 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Han, X., Bi, Q.: Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol’s equation. Nonlinear Dyn. 68, 275–283 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 11711266 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Izhikevich, E.: Synchronization of elliptic bursters. SIAM Rev. 43, 315–344 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture Notes in Mathematics, pp. 44–120. Springer, New York (1995)CrossRefGoogle Scholar
  34. Kramer, M.A., Traub, R.D., Kopell, N.J.: New dynamics in cerebellar Purkinje cells: torus canards. Phys. Rev. Lett. 101, 068103 (2008)CrossRefGoogle Scholar
  35. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)Google Scholar
  36. Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Kuehn, C.: From first Lyapunov coefficients to maximal canards. Int. J. Bifurc. Chaos 20, 1467–1475 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  39. Lanford, O.E., III: Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens. In: Nonlinear Problems in the Physical Sciences and Biology, pp. 159–192. Springer, Berlin (1973)Google Scholar
  40. Levi, M.: Qualitative analysis of the periodically-forced relaxation oscillations. Mem. AMS 32, 244 (1981)MathSciNetzbMATHGoogle Scholar
  41. Levinson, N.: A second-order differential equation with singular solutions. Ann. Math. 50(1), 127–153 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  42. Mitry, J., McCarthy, M., Kopell, N., Wechselberger, M.: Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci. 3, 12 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  43. Roberts, K.-L., Rubin, J., Wechselberger, M.: Averaging, Folded Singularities, and Torus Canards: Explaining Transitions Between Bursting and Spiking in a Coupled Neuron Model. SIAM J. Appl. Dyn. Syst. 14, 1808–1844 (2015)Google Scholar
  44. Rotstein, H., Wechselberger, M., Kopell, N.: Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 7, 1582–1611 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Rubin, J., Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple timescales. Chaos 18, 015105 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  47. Sekikawa, M., Inaba, N., Yoshinaga, T., Kawakami, H.: Collapse of duck solution in a circuit driven by an extremely small periodic force. Electron. Comm. Jpn. Part 3 88(4), 199–207 (2005)Google Scholar
  48. Szmolyan, P., Wechselberger, M.: Canards in \(\mathbb{R}^3\). J. Differ. Equ. 177, 419–453 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  49. Szmolyan, P., Wechselberger, M.: Relaxation oscillations in \(\mathbb{R}^3\). J. Differ. Equ. 200, 69–104 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  50. Teka, W., Tabak, J., Vo, T., Wechselberger, M., Bertram, R.: The dynamics underlying pseudo-plateau bursting in a pituitary cell model. J. Math. Neurosci. 1, 12 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1, 701–710, 754–762 (1920)Google Scholar
  52. van der Pol, B.: Forced oscillations in a circuit with non-linear resistance (reception with reactive triode). Lond. Edinb. Dublin Phil. Mag. J. Sci. Ser. 7, 3, 65–80 (1927)Google Scholar
  53. Vo, T., Wechselberger, M.: Canards of folded saddle-node type I. SIAM J. Math. Anal. 47, 3235–3283 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  54. Wechselberger, M.: Existence and bifurcation of canards in \(\mathbb{R}^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  55. Wechselberger, M.: À propos de canards (apropos canards). Trans. Am. Math. Soc. 364, 3289–3309 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  56. Wechselberger, M., Mitry, J., Rinzel, J.: Canard theory and excitability. In: Nonautonomous Dynamical Systems in the Life Sciences, Lecture Notes in Mathematics, vol. 2102 (Mathematical Biosciences Subseries) (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • John Burke
    • 1
    • 3
  • Mathieu Desroches
    • 4
  • Albert Granados
    • 2
  • Tasso J. Kaper
    • 1
    Email author
  • Martin Krupa
    • 4
  • Theodore Vo
    • 1
  1. 1.Department of Mathematics and StatisticsBoston UniversityBostonUSA
  2. 2.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.MSCI, Inc.BerkeleyUSA
  4. 4.NeuroMathComp Project-TeamInria Sophia-Antipolis Research CentreSophia Antipolis cedexFrance

Personalised recommendations