Journal of Nonlinear Science

, Volume 26, Issue 2, pp 345–364 | Cite as

Designing Heteroclinic and Excitable Networks in Phase Space Using Two Populations of Coupled Cells

Article

Abstract

We give a constructive method for realising an arbitrary directed graph (with no one-cycles) as a heteroclinic or an excitable dynamic network in the phase space of a system of coupled cells of two types. In each case, the system is expressed as a system of first-order differential equations. One of the cell types (the p-cells) interacts by mutual inhibition and classifies which vertex (state) we are currently close to, while the other cell type (the y-cells) excites the p-cells selectively and becomes active only when there is a transition between vertices. We exhibit open sets of parameter values such that these dynamical networks exist and demonstrate via numerical simulation that they can be attractors for suitably chosen parameters.

Keywords

Heteroclinic network Excitable network Coupled dynamical system 

Mathematics Subject Classification

37C80 34C37 

References

  1. Aguiar, M.A.D., Ashwin, P., Dias, A.P.S., Field, M.: Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation. J. Nonlinear Sci. 21, 271–323 (2011)MathSciNetCrossRefMATHGoogle Scholar
  2. Ashwin, P., Field, M.: Heteroclinic networks in coupled cell systems. Arch. Ration. Mech. Anal. 148(2), 107–143 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. Ashwin, P., Borresen, J.: Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys. Rev. E 70(2), 026203 (2004)MathSciNetCrossRefGoogle Scholar
  4. Ashwin, P., Karabacak, O., Nowotny, T.: Criteria for robustness of heteroclinic cycles in neural microcircuits. J. Math. Neurosci. 1, 13 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. Ashwin, P., Lavric, A.: A low-dimensional model of binocular rivalry using winnerless competition. Phys. D 239, 529–536 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. Ashwin, P., Postlethwaite, C.: On designing heteroclinic networks from graphs. Phys. D 265, 26–39 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. Ashwin, P., Postlethwaite, C.: Quantifying noisy attractors: from heteroclinic to excitable networks (2015, in preparation)Google Scholar
  8. Ashwin, P., Orosz, G., Wordsworth, J., Townley, S.: Dynamics on networks of clustered states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Syst. 6(4), 728–758 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. Bick, C., Rabinovich, M.I.: On the occurrence of stable heteroclinic channels in Lotka–Volterra models. Dyn. Syst. 25, 97–110 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience Springer Series: Interdisciplinary Applied Mathematics, vol. 35. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  11. Field, M.: Heteroclinic networks in homogeneous and heterogeneous identical cell systems. J. Nonlinear Sci. 25(3), 779–813 (2015)Google Scholar
  12. Hütt, M.-T., Jain, M.K., Hilgetag, C.C., Lesne, A.: Stochastic resonance in discrete excitable dynamics on graphs. Chaos Solitons Fractals 45, 611–618 (2012)CrossRefGoogle Scholar
  13. Ilyashenko, Yu., Negut, A.: Invisible parts of attractors. Nonlinearity 23, 1199 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)Google Scholar
  15. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006)CrossRefGoogle Scholar
  16. Kirk, V., Postlethwaite, C.M., Rucklidge, A.M.: Resonance of heteroclinic networks. SIADS 11, 1360–1401 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. Kirk, V., Silber, M.: A competition between heteroclinic cycles. Nonlinearity 7, 1605–1621 (1994)MathSciNetCrossRefMATHGoogle Scholar
  18. Komarov, M.A., Osipov, G.V., Suykens, J.A.K.: Sequentially activated groups in neural networks. Europhys. Lett. 86(6), 60006 (2009)CrossRefGoogle Scholar
  19. Kopell, N.J., Gritton, H.J., Whittington, M.A., Kramer, M.A.: Beyond the connectome: the dynome. Neuron 83, 1319–1328 (2014)CrossRefGoogle Scholar
  20. Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7(2), 129–176 (1997)MathSciNetCrossRefMATHGoogle Scholar
  21. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)CrossRefGoogle Scholar
  22. Neves, F.S., Timme, M.: Computation by switching in complex networks of states. Phys. Rev. Lett. 109, 018701 (2012)CrossRefGoogle Scholar
  23. Rabinovich, M.I., Volkovskii, A., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87(6), 068102 (2001)CrossRefGoogle Scholar
  24. Stone, E., Armbruster, D.: Noise and O(1) amplitude effects on heteroclinic cycles. Chaos 9(2), 499–506 (1999)CrossRefMATHGoogle Scholar
  25. Stone, E., Holmes, P.: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math. 50(3), 726–743 (1990)MathSciNetCrossRefMATHGoogle Scholar
  26. Wordsworth, J., Ashwin, P.: Spatiotemporal coding of inputs for a system of globally coupled phase oscillators. Phys. Rev. E 78, 066203 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Center for Systems, Dynamics and Control, Department of MathematicsUniversity of ExeterExeterUK
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations